Spaces:
Runtime error
Runtime error
| # remember to run preprocess.py before training | |
| # preprocess while training is not as effecient | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn import MultiheadAttention | |
| import torch.optim as optim | |
| from torch.utils.data import Dataset, DataLoader, random_split | |
| import json | |
| import time | |
| import os | |
| import h5py | |
| import numpy as np | |
| from tqdm import tqdm | |
| class AttentionBlock(nn.Module): | |
| def __init__(self, input_dim, num_heads, key_dim, ff_dim, rate=0.1): | |
| super(AttentionBlock, self).__init__() | |
| self.multihead_attn = MultiheadAttention(embed_dim=input_dim, num_heads=num_heads) | |
| self.dropout1 = nn.Dropout(rate) | |
| self.layer_norm1 = nn.LayerNorm(input_dim, eps=1e-6) | |
| self.ffn = nn.Sequential( | |
| nn.Linear(input_dim, ff_dim), | |
| nn.ReLU(), | |
| nn.Dropout(rate), | |
| nn.Linear(ff_dim, input_dim), | |
| nn.Dropout(rate) | |
| ) | |
| self.layer_norm2 = nn.LayerNorm(input_dim, eps=1e-6) | |
| def forward(self, x): | |
| attn_output, _ = self.multihead_attn(x, x, x) | |
| attn_output = self.dropout1(attn_output) | |
| out1 = self.layer_norm1(x + attn_output) | |
| ffn_output = self.ffn(out1) | |
| out2 = self.layer_norm2(out1 + ffn_output) | |
| return out2 | |
| class TextureContrastClassifier(nn.Module): | |
| def __init__(self, input_shape, num_heads=4, key_dim=64, ff_dim=256, rate=0.5): | |
| super(TextureContrastClassifier, self).__init__() | |
| input_dim = input_shape[1] # assuming the input shape is (seq_len, feature_dim) | |
| self.rich_texture_attention = AttentionBlock(input_dim, num_heads, key_dim, ff_dim, rate) | |
| self.poor_texture_attention = AttentionBlock(input_dim, num_heads, key_dim, ff_dim, rate) | |
| self.rich_texture_dense = nn.Sequential( | |
| nn.Linear(input_dim, 128), | |
| nn.ReLU(), | |
| nn.Dropout(rate) | |
| ) | |
| self.poor_texture_dense = nn.Sequential( | |
| nn.Linear(input_dim, 128), | |
| nn.ReLU(), | |
| nn.Dropout(rate) | |
| ) | |
| self.fc = nn.Sequential( | |
| nn.Flatten(), | |
| nn.Linear(input_shape[0] * 128, 256), | |
| nn.ReLU(), | |
| nn.Dropout(rate), | |
| nn.Linear(256, 128), | |
| nn.ReLU(), | |
| nn.Dropout(rate), | |
| nn.Linear(128, 64), | |
| nn.ReLU(), | |
| nn.Dropout(rate), | |
| nn.Linear(64, 32), | |
| nn.ReLU(), | |
| nn.Dropout(rate), | |
| nn.Linear(32, 16), | |
| nn.ReLU(), | |
| nn.Dropout(rate), | |
| nn.Linear(16, 1), | |
| nn.Sigmoid() | |
| ) | |
| def forward(self, rich_texture, poor_texture): | |
| rich_texture = self.rich_texture_attention(rich_texture) | |
| rich_texture = self.rich_texture_dense(rich_texture) | |
| poor_texture = self.poor_texture_attention(poor_texture) | |
| poor_texture = self.poor_texture_dense(poor_texture) | |
| difference = rich_texture - poor_texture | |
| output = self.fc(difference) | |
| return output | |
| import os | |
| import h5py | |
| import numpy as np | |
| from tqdm import tqdm | |
| def load_and_split_data(h5_dir, train_ratio=0.8,max_num=40): | |
| train_rich, train_poor, train_labels = [], [], [] | |
| test_rich, test_poor, test_labels = [], [], [] | |
| for file_name in tqdm(os.listdir(h5_dir)[:60]): | |
| if file_name.endswith('.h5'): | |
| file_path = os.path.join(h5_dir, file_name) | |
| try: | |
| with h5py.File(file_path, 'r') as h5f: | |
| rich = h5f['rich'][:] | |
| poor = h5f['poor'][:] | |
| labels = h5f['labels'][:] | |
| dataset_size = len(labels) | |
| train_size = int(train_ratio * dataset_size) | |
| indices = np.random.permutation(dataset_size) | |
| train_indices = indices[:train_size] | |
| test_indices = indices[train_size:] | |
| train_rich.append(rich[train_indices]) | |
| train_poor.append(poor[train_indices]) | |
| train_labels.append(labels[train_indices]) | |
| test_rich.append(rich[test_indices]) | |
| test_poor.append(poor[test_indices]) | |
| test_labels.append(labels[test_indices]) | |
| except Exception as e: | |
| print(f"Error processing {file_name}: {e}") | |
| train_rich = np.concatenate(train_rich, axis=0) | |
| train_poor = np.concatenate(train_poor, axis=0) | |
| train_labels = np.concatenate(train_labels, axis=0) | |
| test_rich = np.concatenate(test_rich, axis=0) | |
| test_poor = np.concatenate(test_poor, axis=0) | |
| test_labels = np.concatenate(test_labels, axis=0) | |
| return train_rich, train_poor, train_labels, test_rich, test_poor, test_labels | |
| class TextureDataset(Dataset): | |
| def __init__(self, rich, poor, labels): | |
| self.rich = rich | |
| self.poor = poor | |
| self.labels = labels | |
| def __len__(self): | |
| return len(self.labels) | |
| def __getitem__(self, idx): | |
| rich = torch.tensor(self.rich[idx], dtype=torch.float32) | |
| poor = torch.tensor(self.poor[idx], dtype=torch.float32) | |
| label = torch.tensor(self.labels[idx], dtype=torch.float32) | |
| return rich, poor, label | |
| def validate(model, test_loader, criterion, device): | |
| model.eval() | |
| val_loss = 0.0 | |
| correct = 0 | |
| total = 0 | |
| with torch.no_grad(): | |
| for rich, poor, labels in test_loader: | |
| rich, poor, labels = rich.to(device), poor.to(device), labels.to(device) | |
| outputs = model(rich, poor) | |
| outputs = outputs.squeeze() | |
| loss = criterion(outputs, labels) | |
| val_loss += loss.item() | |
| predicted = (outputs > 0.5).float() | |
| total += labels.size(0) | |
| correct += (predicted == labels).sum().item() | |
| val_loss /= len(test_loader) | |
| val_accuracy = correct / total | |
| print(f'Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}') | |
| return val_loss, val_accuracy | |
| h5_dir = '/content/drive/MyDrive/h5saves' | |
| train_rich, train_poor, train_labels, test_rich, test_poor, test_labels = load_and_split_data(h5_dir, train_ratio=0.8) | |
| print(f"Training data: {len(train_labels)} samples") | |
| print(f"Testing data: {len(test_labels)} samples") | |
| train_dataset = TextureDataset(train_rich, train_poor, train_labels) | |
| test_dataset = TextureDataset(test_rich, test_poor, test_labels) | |
| batch_size = 2048 | |
| train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) | |
| test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4) | |
| input_shape = (128, 256) | |
| model = TextureContrastClassifier(input_shape) | |
| criterion = nn.BCELoss() | |
| optimizer = optim.Adam(model.parameters(), lr=0.0001) | |
| scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=5, verbose=True) | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| model.to(device) | |
| history = {'train_loss': [], 'val_loss': [], 'train_accuracy':[], 'val_accuracy': []} | |
| save_dir = '/content/drive/MyDrive/model_checkpoints' | |
| if not os.path.exists(save_dir): | |
| os.makedirs(save_dir) | |
| num_epochs = 100 | |
| for epoch in range(num_epochs): | |
| model.train() | |
| running_loss = 0.0 | |
| correct = 0 | |
| total = 0 | |
| batch_loss = 0.0 | |
| for batch_idx, (rich, poor, labels) in enumerate(train_loader): | |
| rich, poor, labels = rich.to(device), poor.to(device), labels.to(device) | |
| optimizer.zero_grad() | |
| outputs = model(rich, poor) | |
| outputs = outputs.squeeze() | |
| loss = criterion(outputs, labels) | |
| loss.backward() | |
| optimizer.step() | |
| running_loss += loss.item() | |
| batch_loss += loss.item() | |
| predicted = (outputs > 0.5).float() | |
| total += labels.size(0) | |
| correct += (predicted == labels).sum().item() | |
| if (batch_idx + 1) % 5 == 0: | |
| print(f'\rEpoch [{epoch+1}/{num_epochs}], Batch [{batch_idx+1}], Loss: {batch_loss / 5:.4f}, Accuracy: {correct / total:.2f}', end='') | |
| batch_loss = 0.0 | |
| avg_train_loss = running_loss / len(train_loader) | |
| train_accuracy = correct / total | |
| val_loss, val_accuracy = validate(model, test_loader, criterion, device) | |
| history['train_loss'].append(avg_train_loss) | |
| history['val_loss'].append(val_loss) | |
| history['val_accuracy'].append(val_accuracy) | |
| history['train_accuracy'].append(train_accuracy) | |
| scheduler.step(val_loss) | |
| checkpoint_path = os.path.join(save_dir, f'model_epoch_{epoch+1}.pth') | |
| torch.save(model.state_dict(), checkpoint_path) | |
| print(f'\nModel checkpoint saved for epoch {epoch+1}') | |
| print(f'Epoch [{epoch+1}/{num_epochs:.4f}], Training Loss: {avg_train_loss:.4f}, Training Accuracy: {train_accuracy:.4f} Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}') | |
| history_path = os.path.join(save_dir, 'training_history.json') | |
| with open(history_path, 'w') as f: | |
| json.dump(history, f) | |
| print('Finished Training') | |
| print(f'Training history saved at {history_path}') | |