Spaces:
Configuration error
Configuration error
| import gradio as gr | |
| import json | |
| import torch | |
| import wavio | |
| from tqdm import tqdm | |
| from huggingface_hub import snapshot_download | |
| from models import AudioDiffusion, DDPMScheduler | |
| from audioldm.audio.stft import TacotronSTFT | |
| from audioldm.variational_autoencoder import AutoencoderKL | |
| from pydub import AudioSegment | |
| from gradio import Markdown | |
| import spaces | |
| import torch | |
| #from diffusers.models.autoencoder_kl import AutoencoderKL | |
| from diffusers.models.unet_2d_condition import UNet2DConditionModel | |
| from diffusers import DiffusionPipeline,AudioPipelineOutput | |
| from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast | |
| from typing import Union | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from tqdm import tqdm | |
| class TangoPipeline(DiffusionPipeline): | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: T5EncoderModel, | |
| tokenizer: Union[T5Tokenizer, T5TokenizerFast], | |
| unet: UNet2DConditionModel, | |
| scheduler: DDPMScheduler | |
| ): | |
| super().__init__() | |
| self.register_modules(vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler | |
| ) | |
| def _encode_prompt(self, prompt): | |
| device = self.text_encoder.device | |
| batch = self.tokenizer( | |
| prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
| ) | |
| input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
| encoder_hidden_states = self.text_encoder( | |
| input_ids=input_ids, attention_mask=attention_mask | |
| )[0] | |
| boolean_encoder_mask = (attention_mask == 1).to(device) | |
| return encoder_hidden_states, boolean_encoder_mask | |
| def _encode_text_classifier_free(self, prompt, num_samples_per_prompt): | |
| device = self.text_encoder.device | |
| batch = self.tokenizer( | |
| prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
| ) | |
| input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
| with torch.no_grad(): | |
| prompt_embeds = self.text_encoder( | |
| input_ids=input_ids, attention_mask=attention_mask | |
| )[0] | |
| prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
| attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
| # get unconditional embeddings for classifier free guidance | |
| uncond_tokens = [""] * len(prompt) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_batch = self.tokenizer( | |
| uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", | |
| ) | |
| uncond_input_ids = uncond_batch.input_ids.to(device) | |
| uncond_attention_mask = uncond_batch.attention_mask.to(device) | |
| with torch.no_grad(): | |
| negative_prompt_embeds = self.text_encoder( | |
| input_ids=uncond_input_ids, attention_mask=uncond_attention_mask | |
| )[0] | |
| negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
| uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) | |
| boolean_prompt_mask = (prompt_mask == 1).to(device) | |
| return prompt_embeds, boolean_prompt_mask | |
| def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): | |
| shape = (batch_size, num_channels_latents, 256, 16) | |
| latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * inference_scheduler.init_noise_sigma | |
| return latents | |
| def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, | |
| disable_progress=True): | |
| device = self.text_encoder.device | |
| classifier_free_guidance = guidance_scale > 1.0 | |
| batch_size = len(prompt) * num_samples_per_prompt | |
| if classifier_free_guidance: | |
| prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt) | |
| else: | |
| prompt_embeds, boolean_prompt_mask = self._encode_text(prompt) | |
| prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
| boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) | |
| inference_scheduler.set_timesteps(num_steps, device=device) | |
| timesteps = inference_scheduler.timesteps | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) | |
| num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order | |
| progress_bar = tqdm(range(num_steps), disable=disable_progress) | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents | |
| latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) | |
| noise_pred = self.unet( | |
| latent_model_input, t, encoder_hidden_states=prompt_embeds, | |
| encoder_attention_mask=boolean_prompt_mask | |
| ).sample | |
| # perform guidance | |
| if classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = inference_scheduler.step(noise_pred, t, latents).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): | |
| progress_bar.update(1) | |
| return latents | |
| def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): | |
| """ Genrate audio for a single prompt string. """ | |
| with torch.no_grad(): | |
| latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) | |
| mel = self.vae.decode_first_stage(latents) | |
| wave = self.vae.decode_to_waveform(mel) | |
| return AudioPipelineOutput(audios=wave) | |
| # Automatic device detection | |
| if torch.cuda.is_available(): | |
| device_type = "cuda" | |
| device_selection = "cuda:0" | |
| else: | |
| device_type = "cpu" | |
| device_selection = "cpu" | |
| class Tango: | |
| def __init__(self, name="declare-lab/tango-music-af-ft-mc", device=device_selection): | |
| path = snapshot_download(repo_id=name) | |
| vae_config = json.load(open("{}/vae_config.json".format(path))) | |
| stft_config = json.load(open("{}/stft_config.json".format(path))) | |
| main_config = json.load(open("{}/main_config.json".format(path))) | |
| self.vae = AutoencoderKL(**vae_config).to(device) | |
| self.stft = TacotronSTFT(**stft_config).to(device) | |
| self.model = AudioDiffusion(**main_config).to(device) | |
| vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device) | |
| stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device) | |
| main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device) | |
| self.vae.load_state_dict(vae_weights) | |
| self.stft.load_state_dict(stft_weights) | |
| self.model.load_state_dict(main_weights) | |
| print ("Successfully loaded checkpoint from:", name) | |
| self.vae.eval() | |
| self.stft.eval() | |
| self.model.eval() | |
| self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler") | |
| def chunks(self, lst, n): | |
| """ Yield successive n-sized chunks from a list. """ | |
| for i in range(0, len(lst), n): | |
| yield lst[i:i + n] | |
| def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): | |
| """ Genrate audio for a single prompt string. """ | |
| with torch.no_grad(): | |
| latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) | |
| mel = self.vae.decode_first_stage(latents) | |
| wave = self.vae.decode_to_waveform(mel) | |
| return wave[0] | |
| def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True): | |
| """ Genrate audio for a list of prompt strings. """ | |
| outputs = [] | |
| for k in tqdm(range(0, len(prompts), batch_size)): | |
| batch = prompts[k: k+batch_size] | |
| with torch.no_grad(): | |
| latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress) | |
| mel = self.vae.decode_first_stage(latents) | |
| wave = self.vae.decode_to_waveform(mel) | |
| outputs += [item for item in wave] | |
| if samples == 1: | |
| return outputs | |
| else: | |
| return list(self.chunks(outputs, samples)) | |
| # Initialize TANGO | |
| tango = Tango(device="cpu") | |
| tango.vae.to(device_type) | |
| tango.stft.to(device_type) | |
| tango.model.to(device_type) | |
| pipe = TangoPipeline(vae=tango.vae, | |
| text_encoder=tango.model.text_encoder, | |
| tokenizer=tango.model.tokenizer, | |
| unet=tango.model.unet, | |
| scheduler=tango.scheduler | |
| ) | |
| def gradio_generate(prompt, output_format, steps, guidance): | |
| output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above | |
| #output_wave = tango.generate(prompt, steps, guidance) | |
| # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav" | |
| output_wave = output_wave.audios[0] | |
| output_filename = "temp.wav" | |
| wavio.write(output_filename, output_wave, rate=16000, sampwidth=2) | |
| if (output_format == "mp3"): | |
| AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3") | |
| output_filename = "temp.mp3" | |
| return output_filename | |
| description_text = """ | |
| <p><a href="https://huggingface.co/spaces/declare-lab/Tango-Music-AF/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/> | |
| Generate music using Tango-Music-AF by providing a text prompt. The model was trained on a combination of MusicCaps and synthetic corpus of captions for audio. | |
| <br/><br/> This is the demo for Tango-Music-AF for text to music generation: <a href="https://arxiv.org/pdf/2406.15487">Read our paper.</a> | |
| <p/> | |
| """ | |
| # Gradio input and output components | |
| input_text = gr.Textbox(lines=2, label="Prompt") | |
| output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav") | |
| output_audio = gr.Audio(label="Generated Audio", type="filepath") | |
| denoising_steps = gr.Slider(minimum=100, maximum=200, value=100, step=1, label="Steps", interactive=True) | |
| guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True) | |
| # Gradio interface | |
| gr_interface = gr.Interface( | |
| fn=gradio_generate, | |
| inputs=[input_text, output_format, denoising_steps, guidance_scale], | |
| outputs=[output_audio], | |
| title="Improving Text-To-Audio Models with Synthetic Captions", | |
| description=description_text, | |
| allow_flagging=False, | |
| examples=[ | |
| ["The song has a traditional jazzy feel to it. The piano chord progression is bouncy and light. The electric guitar has a chorus applied to it, and we hear various licks being played."], | |
| ["This song is a fusion of alternative and folk genres, highlighting simple yet soulful melodies and minimalist instrumentals."], | |
| ["The instrumental music features an ensemble that resembles the orchestra. The melody is being played by a brass section while strings provide harmonic accompaniment."], | |
| ["This music is instrumental. The tempo is fast with a lively keyboard harmony, steady drumming, groovy bass lines and harmonica melodic. The song is fresh, groovy, sunny, happy; vivacious and spirited."], | |
| ], | |
| cache_examples="lazy", # Turn on to cache. | |
| ) | |
| # Launch Gradio app | |
| gr_interface.queue(10).launch() |