basic_agent / app.py
techy-ai
build error for audio fixed
1ea0be0
import os
import gradio as gr
import requests
import pandas as pd
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Import your custom agent graph from agent.py ---
from agent import build_graph
from langchain_core.messages import HumanMessage
# --- Basic Agent Definition (wrapper around your graph) ---
class BasicAgent:
def __init__(self):
print("Initializing BasicAgent with agent.py graph...")
self.graph = build_graph()
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:50]}...")
try:
messages = [HumanMessage(content=question)]
result = self.graph.invoke({"messages": messages})
answer = result["messages"][-1].content
if answer.lower().startswith("final answer"):
answer = answer.split(":", 1)[-1].strip()
print(f"Agent returning: {answer}")
return answer
except Exception as e:
print(f"Error inside agent: {e}")
return f"AGENT ERROR: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "N/A"
print(f"Agent code repo: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload,
}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space and implement your logic in `agent.py`.
2. Log in with your Hugging Face account.
3. Click **Run Evaluation & Submit All Answers**.
---
⚠️ The process may take a while (agent needs to answer all questions).
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n--- App Starting ---")
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST: {space_host_startup}")
print(f" Runtime URL: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
else:
print("ℹ️ SPACE_ID not found (running locally?).")
print("--------------------\n")
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False)