Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import requests | |
| import pandas as pd | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Import your custom agent graph from agent.py --- | |
| from agent import build_graph | |
| from langchain_core.messages import HumanMessage | |
| # --- Basic Agent Definition (wrapper around your graph) --- | |
| class BasicAgent: | |
| def __init__(self): | |
| print("Initializing BasicAgent with agent.py graph...") | |
| self.graph = build_graph() | |
| def __call__(self, question: str) -> str: | |
| print(f"Agent received question: {question[:50]}...") | |
| try: | |
| messages = [HumanMessage(content=question)] | |
| result = self.graph.invoke({"messages": messages}) | |
| answer = result["messages"][-1].content | |
| if answer.lower().startswith("final answer"): | |
| answer = answer.split(":", 1)[-1].strip() | |
| print(f"Agent returning: {answer}") | |
| return answer | |
| except Exception as e: | |
| print(f"Error inside agent: {e}") | |
| return f"AGENT ERROR: {e}" | |
| def run_and_submit_all(profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| space_id = os.getenv("SPACE_ID") | |
| if profile: | |
| username = f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent | |
| try: | |
| agent = BasicAgent() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "N/A" | |
| print(f"Agent code repo: {agent_code}") | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except Exception as e: | |
| return f"Error fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| continue | |
| submitted_answer = agent(question_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": question_text, | |
| "Submitted Answer": submitted_answer | |
| }) | |
| if not answers_payload: | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = { | |
| "username": username.strip(), | |
| "agent_code": agent_code, | |
| "answers": answers_payload, | |
| } | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except Exception as e: | |
| return f"Submission Failed: {e}", pd.DataFrame(results_log) | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Clone this space and implement your logic in `agent.py`. | |
| 2. Log in with your Hugging Face account. | |
| 3. Click **Run Evaluation & Submit All Answers**. | |
| --- | |
| ⚠️ The process may take a while (agent needs to answer all questions). | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n--- App Starting ---") | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST: {space_host_startup}") | |
| print(f" Runtime URL: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST not found (running locally?).") | |
| if space_id_startup: | |
| print(f"✅ SPACE_ID: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| else: | |
| print("ℹ️ SPACE_ID not found (running locally?).") | |
| print("--------------------\n") | |
| print("Launching Gradio Interface...") | |
| demo.launch(debug=True, share=False) | |