ecopus commited on
Commit
c365d5e
·
verified ·
1 Parent(s): 62aba27

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +28 -8
app.py CHANGED
@@ -39,8 +39,8 @@ sets_un = np.unique(sets)
39
  print('unique sets:', sets_un)
40
  print(type(sets_un))
41
 
42
-
43
- for c in features:
44
  input_names.append(c)
45
  if c=="Card":
46
  inputs.append(gr.Textbox(value="", label=c))
@@ -57,6 +57,30 @@ for c in features:
57
  elif c=="Set Number Eq":
58
  inputs.append(gr.Number(label=c, value = 0.0))
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  def predict_record(*args):
61
  record = {name: val for name, val in zip(input_names, args)}
62
  df_in = pd.DataFrame([record])
@@ -67,14 +91,10 @@ iface = gr.Interface(
67
  inputs=inputs,
68
  outputs=gr.Textbox(label="Is this card a collector's item?"),
69
  title="Pokémon Card Collector's Item Predictor (AutoGluon)",
70
- description="Predicts whether a Pokémon card is a collector's item."
 
71
  )
72
 
73
- examples = [
74
- ["Pikachu V", 2021, "Journey Together", "Full Art", "Mint", 50.0, 0.6],
75
- ["Charizard", 1999, "Base Set", "Holo", "Near Mint", 12.0, 1.4]
76
- ]
77
- iface.examples = examples
78
 
79
  if __name__ == "__main__":
80
  iface.launch()
 
39
  print('unique sets:', sets_un)
40
  print(type(sets_un))
41
 
42
+ desired_order = ["Card", "Year", "Card Set", "Artwork Style", "Condition", "Market Value", "Set Number Eq"]
43
+ for c in desired_order:
44
  input_names.append(c)
45
  if c=="Card":
46
  inputs.append(gr.Textbox(value="", label=c))
 
57
  elif c=="Set Number Eq":
58
  inputs.append(gr.Number(label=c, value = 0.0))
59
 
60
+ examples_dicts = [
61
+ {
62
+ "Card": "Pikachu V",
63
+ "Year": 2021,
64
+ "Card Set": "Journey Together",
65
+ "Artwork Style": "Full Art",
66
+ "Condition": "Mint",
67
+ "Market Value": 50.0,
68
+ "Set Number Eq": 0.6
69
+ },
70
+ {
71
+ "Card": "Charizard",
72
+ "Year": 1999,
73
+ "Card Set": "Base Set",
74
+ "Artwork Style": "Holo",
75
+ "Condition": "Near Mint",
76
+ "Market Value": 12.0,
77
+ "Set Number Eq": 1.4
78
+ }
79
+ ]
80
+
81
+ # Convert examples dicts into positional lists matching input_names
82
+ examples = [[ex[name] for name in input_names] for ex in examples_dicts]
83
+
84
  def predict_record(*args):
85
  record = {name: val for name, val in zip(input_names, args)}
86
  df_in = pd.DataFrame([record])
 
91
  inputs=inputs,
92
  outputs=gr.Textbox(label="Is this card a collector's item?"),
93
  title="Pokémon Card Collector's Item Predictor (AutoGluon)",
94
+ description="Predicts whether a Pokémon card is a collector's item.",
95
+ examples=examples
96
  )
97
 
 
 
 
 
 
98
 
99
  if __name__ == "__main__":
100
  iface.launch()