Spaces:
Sleeping
Sleeping
Commit
·
b6a80c5
1
Parent(s):
8a96280
Simplify app structure - remove FastAPI conflict
Browse files
app.py
CHANGED
|
@@ -6,8 +6,6 @@ import base64
|
|
| 6 |
from io import BytesIO
|
| 7 |
import json
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
-
from fastapi import FastAPI, Request
|
| 10 |
-
from fastapi.responses import JSONResponse
|
| 11 |
|
| 12 |
print("🚀 Starting Affecto Inference Service...")
|
| 13 |
|
|
@@ -29,7 +27,7 @@ print(f"✅ Model downloaded to: {model_path}")
|
|
| 29 |
|
| 30 |
# Load checkpoint
|
| 31 |
checkpoint = torch.load(model_path, map_location=device)
|
| 32 |
-
print(f"📦 Checkpoint
|
| 33 |
|
| 34 |
# ============================================
|
| 35 |
# IMAGE PROCESSING UTILITIES
|
|
@@ -42,24 +40,22 @@ def preprocess_image(image):
|
|
| 42 |
if not isinstance(image, Image.Image):
|
| 43 |
image = Image.fromarray(image)
|
| 44 |
|
| 45 |
-
# Ensure RGB
|
| 46 |
if image.mode != 'RGB':
|
| 47 |
image = image.convert('RGB')
|
| 48 |
|
| 49 |
-
# Transform
|
| 50 |
transform = transforms.Compose([
|
| 51 |
transforms.Resize((256, 256)),
|
| 52 |
transforms.ToTensor(),
|
| 53 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 54 |
])
|
| 55 |
|
| 56 |
-
tensor = transform(image).unsqueeze(0)
|
| 57 |
return tensor.to(device)
|
| 58 |
|
| 59 |
def postprocess_tensor(tensor):
|
| 60 |
"""Convert tensor to PIL image"""
|
| 61 |
tensor = tensor.squeeze(0).cpu()
|
| 62 |
-
tensor = tensor * 0.5 + 0.5
|
| 63 |
tensor = torch.clamp(tensor, 0, 1)
|
| 64 |
|
| 65 |
numpy_image = tensor.numpy().transpose(1, 2, 0)
|
|
@@ -79,59 +75,44 @@ def base64_to_pil(base64_str):
|
|
| 79 |
return Image.open(BytesIO(image_bytes))
|
| 80 |
|
| 81 |
# ============================================
|
| 82 |
-
#
|
| 83 |
# ============================================
|
| 84 |
|
| 85 |
def apply_emotion_transform(input_tensor, au_params):
|
| 86 |
-
"""
|
| 87 |
-
Apply emotion transformation
|
| 88 |
-
|
| 89 |
-
TODO: Replace this with actual MagicFace inference when you have the model architecture
|
| 90 |
-
For now, this is a placeholder that applies simple image adjustments
|
| 91 |
-
"""
|
| 92 |
print(f"🎭 Applying transformation with AU params: {au_params}")
|
| 93 |
|
| 94 |
-
# PLACEHOLDER: Simple brightness/contrast adjustment based on AU params
|
| 95 |
-
# In production, replace this with actual model inference
|
| 96 |
output = input_tensor.clone()
|
| 97 |
|
| 98 |
-
# Example: Adjust based on AU12 (smile)
|
| 99 |
if "AU12" in au_params:
|
| 100 |
intensity = au_params["AU12"]
|
| 101 |
-
output = output * (1.0 + intensity * 0.2)
|
| 102 |
|
| 103 |
-
# Example: Adjust based on AU4 (frown)
|
| 104 |
if "AU4" in au_params:
|
| 105 |
intensity = au_params["AU4"]
|
| 106 |
-
output = output * (1.0 - intensity * 0.15)
|
| 107 |
|
| 108 |
output = torch.clamp(output, -1, 1)
|
| 109 |
-
|
| 110 |
return output
|
| 111 |
|
| 112 |
# ============================================
|
| 113 |
-
# API
|
| 114 |
# ============================================
|
| 115 |
|
| 116 |
-
def transform_api(
|
| 117 |
"""API function for external calls"""
|
| 118 |
try:
|
|
|
|
|
|
|
|
|
|
| 119 |
print(f"📥 Received API request with AU params: {au_params}")
|
| 120 |
|
| 121 |
-
# Decode image
|
| 122 |
image = base64_to_pil(image_base64)
|
| 123 |
print(f"📸 Image size: {image.size}")
|
| 124 |
|
| 125 |
-
# Preprocess
|
| 126 |
input_tensor = preprocess_image(image)
|
| 127 |
-
|
| 128 |
-
# Transform
|
| 129 |
output_tensor = apply_emotion_transform(input_tensor, au_params)
|
| 130 |
-
|
| 131 |
-
# Postprocess
|
| 132 |
result_image = postprocess_tensor(output_tensor)
|
| 133 |
-
|
| 134 |
-
# Encode result
|
| 135 |
result_base64 = pil_to_base64(result_image)
|
| 136 |
|
| 137 |
print("✅ Transformation complete")
|
|
@@ -152,25 +133,38 @@ def transform_api(image_base64, au_params):
|
|
| 152 |
"message": "Transformation failed"
|
| 153 |
}
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
# ============================================
|
| 156 |
-
# GRADIO INTERFACE
|
| 157 |
# ============================================
|
| 158 |
|
| 159 |
def transform_gradio(image, au_params_str):
|
| 160 |
"""Gradio interface function"""
|
| 161 |
try:
|
| 162 |
-
# Parse AU params
|
| 163 |
au_params = json.loads(au_params_str)
|
| 164 |
-
|
| 165 |
-
# Preprocess
|
| 166 |
input_tensor = preprocess_image(image)
|
| 167 |
-
|
| 168 |
-
# Transform
|
| 169 |
output_tensor = apply_emotion_transform(input_tensor, au_params)
|
| 170 |
-
|
| 171 |
-
# Postprocess
|
| 172 |
result_image = postprocess_tensor(output_tensor)
|
| 173 |
-
|
| 174 |
return result_image
|
| 175 |
except Exception as e:
|
| 176 |
print(f"❌ Error: {str(e)}")
|
|
@@ -178,59 +172,7 @@ def transform_gradio(image, au_params_str):
|
|
| 178 |
traceback.print_exc()
|
| 179 |
return image
|
| 180 |
|
| 181 |
-
#
|
| 182 |
-
# FASTAPI APP (Must be created BEFORE Gradio)
|
| 183 |
-
# ============================================
|
| 184 |
-
|
| 185 |
-
app = FastAPI(title="Affecto Inference API")
|
| 186 |
-
|
| 187 |
-
@app.get("/")
|
| 188 |
-
async def root():
|
| 189 |
-
"""Root endpoint"""
|
| 190 |
-
return {
|
| 191 |
-
"message": "Affecto Inference API",
|
| 192 |
-
"status": "running",
|
| 193 |
-
"version": "1.0.0",
|
| 194 |
-
"endpoints": {
|
| 195 |
-
"health": "/health",
|
| 196 |
-
"transform": "/transform",
|
| 197 |
-
"gradio_ui": "/gradio"
|
| 198 |
-
}
|
| 199 |
-
}
|
| 200 |
-
|
| 201 |
-
@app.get("/health")
|
| 202 |
-
async def health_check():
|
| 203 |
-
"""Health check endpoint"""
|
| 204 |
-
return {
|
| 205 |
-
"status": "healthy",
|
| 206 |
-
"model": "magicface",
|
| 207 |
-
"device": str(device),
|
| 208 |
-
"version": "1.0.0"
|
| 209 |
-
}
|
| 210 |
-
|
| 211 |
-
@app.post("/transform")
|
| 212 |
-
async def api_transform_endpoint(request: Request):
|
| 213 |
-
"""Main transformation endpoint"""
|
| 214 |
-
try:
|
| 215 |
-
data = await request.json()
|
| 216 |
-
result = transform_api(
|
| 217 |
-
image_base64=data["image"],
|
| 218 |
-
au_params=data["au_params"]
|
| 219 |
-
)
|
| 220 |
-
return JSONResponse(content=result)
|
| 221 |
-
except Exception as e:
|
| 222 |
-
return JSONResponse(
|
| 223 |
-
content={
|
| 224 |
-
"success": False,
|
| 225 |
-
"error": str(e)
|
| 226 |
-
},
|
| 227 |
-
status_code=500
|
| 228 |
-
)
|
| 229 |
-
|
| 230 |
-
# ============================================
|
| 231 |
-
# GRADIO UI
|
| 232 |
-
# ============================================
|
| 233 |
-
|
| 234 |
with gr.Blocks(theme=gr.themes.Soft(), title="Affecto Inference API") as demo:
|
| 235 |
gr.Markdown("# 🎭 Affecto - Emotion Transformation API")
|
| 236 |
gr.Markdown("Transform facial emotions using MagicFace Action Units")
|
|
@@ -250,17 +192,15 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Affecto Inference API") as demo:
|
|
| 250 |
output_image = gr.Image(type="pil", label="Transformed Result")
|
| 251 |
|
| 252 |
gr.Markdown("### 🎨 Emotion Presets:")
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
label="Click to use preset"
|
| 263 |
-
)
|
| 264 |
|
| 265 |
transform_btn.click(
|
| 266 |
fn=transform_gradio,
|
|
@@ -272,91 +212,58 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Affecto Inference API") as demo:
|
|
| 272 |
gr.Markdown("""
|
| 273 |
## API Endpoints
|
| 274 |
|
| 275 |
-
###
|
| 276 |
-
**
|
| 277 |
-
|
| 278 |
-
```bash
|
| 279 |
-
curl https://gauravvjhaa-affecto-inference.hf.space/health
|
| 280 |
-
```
|
| 281 |
-
|
| 282 |
-
### 2. Transform Image
|
| 283 |
-
**POST** `/transform`
|
| 284 |
|
| 285 |
-
**Request Format:**
|
| 286 |
```json
|
| 287 |
{
|
| 288 |
-
"image": "
|
| 289 |
-
"au_params": {
|
| 290 |
-
"AU6": 1.0,
|
| 291 |
-
"AU12": 1.0
|
| 292 |
-
}
|
| 293 |
-
}
|
| 294 |
-
```
|
| 295 |
-
|
| 296 |
-
**Response Format:**
|
| 297 |
-
```json
|
| 298 |
-
{
|
| 299 |
-
"success": true,
|
| 300 |
-
"transformed_image": "base64_encoded_result",
|
| 301 |
-
"au_params": {...},
|
| 302 |
-
"message": "Transformation successful"
|
| 303 |
}
|
| 304 |
```
|
| 305 |
|
| 306 |
-
###
|
| 307 |
-
|
| 308 |
-
- **AU2**: Outer Brow Raiser
|
| 309 |
-
- **AU4**: Brow Lowerer
|
| 310 |
-
- **AU5**: Upper Lid Raiser
|
| 311 |
-
- **AU6**: Cheek Raiser
|
| 312 |
-
- **AU7**: Lid Tightener
|
| 313 |
-
- **AU9**: Nose Wrinkler
|
| 314 |
-
- **AU12**: Lip Corner Puller (Smile)
|
| 315 |
-
- **AU15**: Lip Corner Depressor
|
| 316 |
-
- **AU17**: Chin Raiser
|
| 317 |
-
- **AU20**: Lip Stretcher
|
| 318 |
-
- **AU23**: Lip Tightener
|
| 319 |
-
- **AU25**: Lips Part
|
| 320 |
-
- **AU26**: Jaw Drop
|
| 321 |
-
|
| 322 |
-
### Example Usage (Python):
|
| 323 |
-
```python
|
| 324 |
-
import requests
|
| 325 |
-
import base64
|
| 326 |
-
|
| 327 |
-
# Read image
|
| 328 |
-
with open("image.jpg", "rb") as f:
|
| 329 |
-
image_base64 = base64.b64encode(f.read()).decode()
|
| 330 |
|
| 331 |
-
|
| 332 |
-
response = requests.post(
|
| 333 |
-
"https://gauravvjhaa-affecto-inference.hf.space/transform",
|
| 334 |
-
json={
|
| 335 |
-
"image": image_base64,
|
| 336 |
-
"au_params": {"AU6": 1.0, "AU12": 1.0}
|
| 337 |
-
}
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
result = response.json()
|
| 341 |
-
print(result["success"])
|
| 342 |
-
```
|
| 343 |
-
|
| 344 |
-
### Example Usage (cURL):
|
| 345 |
-
```bash
|
| 346 |
-
curl -X POST https://gauravvjhaa-affecto-inference.hf.space/transform \\
|
| 347 |
-
-H "Content-Type: application/json" \\
|
| 348 |
-
-d '{
|
| 349 |
-
"image": "YOUR_BASE64_IMAGE",
|
| 350 |
-
"au_params": {"AU6": 1.0, "AU12": 1.0}
|
| 351 |
-
}'
|
| 352 |
-
```
|
| 353 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
|
| 355 |
-
#
|
| 356 |
-
|
| 357 |
|
| 358 |
print("✅ Affecto Inference API Ready!")
|
| 359 |
-
print(f"🌐
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
|
|
|
|
|
| 6 |
from io import BytesIO
|
| 7 |
import json
|
| 8 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
| 9 |
|
| 10 |
print("🚀 Starting Affecto Inference Service...")
|
| 11 |
|
|
|
|
| 27 |
|
| 28 |
# Load checkpoint
|
| 29 |
checkpoint = torch.load(model_path, map_location=device)
|
| 30 |
+
print(f"📦 Checkpoint loaded successfully")
|
| 31 |
|
| 32 |
# ============================================
|
| 33 |
# IMAGE PROCESSING UTILITIES
|
|
|
|
| 40 |
if not isinstance(image, Image.Image):
|
| 41 |
image = Image.fromarray(image)
|
| 42 |
|
|
|
|
| 43 |
if image.mode != 'RGB':
|
| 44 |
image = image.convert('RGB')
|
| 45 |
|
|
|
|
| 46 |
transform = transforms.Compose([
|
| 47 |
transforms.Resize((256, 256)),
|
| 48 |
transforms.ToTensor(),
|
| 49 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 50 |
])
|
| 51 |
|
| 52 |
+
tensor = transform(image).unsqueeze(0)
|
| 53 |
return tensor.to(device)
|
| 54 |
|
| 55 |
def postprocess_tensor(tensor):
|
| 56 |
"""Convert tensor to PIL image"""
|
| 57 |
tensor = tensor.squeeze(0).cpu()
|
| 58 |
+
tensor = tensor * 0.5 + 0.5
|
| 59 |
tensor = torch.clamp(tensor, 0, 1)
|
| 60 |
|
| 61 |
numpy_image = tensor.numpy().transpose(1, 2, 0)
|
|
|
|
| 75 |
return Image.open(BytesIO(image_bytes))
|
| 76 |
|
| 77 |
# ============================================
|
| 78 |
+
# TRANSFORMATION
|
| 79 |
# ============================================
|
| 80 |
|
| 81 |
def apply_emotion_transform(input_tensor, au_params):
|
| 82 |
+
"""Apply emotion transformation (placeholder)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
print(f"🎭 Applying transformation with AU params: {au_params}")
|
| 84 |
|
|
|
|
|
|
|
| 85 |
output = input_tensor.clone()
|
| 86 |
|
|
|
|
| 87 |
if "AU12" in au_params:
|
| 88 |
intensity = au_params["AU12"]
|
| 89 |
+
output = output * (1.0 + intensity * 0.2)
|
| 90 |
|
|
|
|
| 91 |
if "AU4" in au_params:
|
| 92 |
intensity = au_params["AU4"]
|
| 93 |
+
output = output * (1.0 - intensity * 0.15)
|
| 94 |
|
| 95 |
output = torch.clamp(output, -1, 1)
|
|
|
|
| 96 |
return output
|
| 97 |
|
| 98 |
# ============================================
|
| 99 |
+
# API FUNCTIONS
|
| 100 |
# ============================================
|
| 101 |
|
| 102 |
+
def transform_api(data):
|
| 103 |
"""API function for external calls"""
|
| 104 |
try:
|
| 105 |
+
image_base64 = data["image"]
|
| 106 |
+
au_params = data["au_params"]
|
| 107 |
+
|
| 108 |
print(f"📥 Received API request with AU params: {au_params}")
|
| 109 |
|
|
|
|
| 110 |
image = base64_to_pil(image_base64)
|
| 111 |
print(f"📸 Image size: {image.size}")
|
| 112 |
|
|
|
|
| 113 |
input_tensor = preprocess_image(image)
|
|
|
|
|
|
|
| 114 |
output_tensor = apply_emotion_transform(input_tensor, au_params)
|
|
|
|
|
|
|
| 115 |
result_image = postprocess_tensor(output_tensor)
|
|
|
|
|
|
|
| 116 |
result_base64 = pil_to_base64(result_image)
|
| 117 |
|
| 118 |
print("✅ Transformation complete")
|
|
|
|
| 133 |
"message": "Transformation failed"
|
| 134 |
}
|
| 135 |
|
| 136 |
+
def health_check():
|
| 137 |
+
"""Health check function"""
|
| 138 |
+
return {
|
| 139 |
+
"status": "healthy",
|
| 140 |
+
"model": "magicface",
|
| 141 |
+
"device": str(device),
|
| 142 |
+
"version": "1.0.0"
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
def root_info():
|
| 146 |
+
"""Root info function"""
|
| 147 |
+
return {
|
| 148 |
+
"message": "Affecto Inference API",
|
| 149 |
+
"status": "running",
|
| 150 |
+
"version": "1.0.0",
|
| 151 |
+
"endpoints": {
|
| 152 |
+
"health": "/health",
|
| 153 |
+
"transform": "/transform"
|
| 154 |
+
}
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
# ============================================
|
| 158 |
+
# GRADIO INTERFACE
|
| 159 |
# ============================================
|
| 160 |
|
| 161 |
def transform_gradio(image, au_params_str):
|
| 162 |
"""Gradio interface function"""
|
| 163 |
try:
|
|
|
|
| 164 |
au_params = json.loads(au_params_str)
|
|
|
|
|
|
|
| 165 |
input_tensor = preprocess_image(image)
|
|
|
|
|
|
|
| 166 |
output_tensor = apply_emotion_transform(input_tensor, au_params)
|
|
|
|
|
|
|
| 167 |
result_image = postprocess_tensor(output_tensor)
|
|
|
|
| 168 |
return result_image
|
| 169 |
except Exception as e:
|
| 170 |
print(f"❌ Error: {str(e)}")
|
|
|
|
| 172 |
traceback.print_exc()
|
| 173 |
return image
|
| 174 |
|
| 175 |
+
# Build Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
with gr.Blocks(theme=gr.themes.Soft(), title="Affecto Inference API") as demo:
|
| 177 |
gr.Markdown("# 🎭 Affecto - Emotion Transformation API")
|
| 178 |
gr.Markdown("Transform facial emotions using MagicFace Action Units")
|
|
|
|
| 192 |
output_image = gr.Image(type="pil", label="Transformed Result")
|
| 193 |
|
| 194 |
gr.Markdown("### 🎨 Emotion Presets:")
|
| 195 |
+
gr.Examples(
|
| 196 |
+
examples=[
|
| 197 |
+
['{"AU6": 1.0, "AU12": 1.0}'],
|
| 198 |
+
['{"AU1": 1.0, "AU4": 1.0, "AU15": 1.0}'],
|
| 199 |
+
['{"AU4": 1.0, "AU5": 1.0, "AU7": 1.0, "AU23": 1.0}'],
|
| 200 |
+
['{"AU1": 1.0, "AU2": 1.0, "AU5": 1.0, "AU26": 1.0}'],
|
| 201 |
+
],
|
| 202 |
+
inputs=[au_params_input],
|
| 203 |
+
)
|
|
|
|
|
|
|
| 204 |
|
| 205 |
transform_btn.click(
|
| 206 |
fn=transform_gradio,
|
|
|
|
| 212 |
gr.Markdown("""
|
| 213 |
## API Endpoints
|
| 214 |
|
| 215 |
+
### Transform Image
|
| 216 |
+
**POST** `/api/transform`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
|
|
|
| 218 |
```json
|
| 219 |
{
|
| 220 |
+
"image": "base64_encoded_image",
|
| 221 |
+
"au_params": {"AU6": 1.0, "AU12": 1.0}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
}
|
| 223 |
```
|
| 224 |
|
| 225 |
+
### Health Check
|
| 226 |
+
**GET** `/api/health`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
Returns service status and model information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
""")
|
| 230 |
+
|
| 231 |
+
# API endpoints as Gradio functions
|
| 232 |
+
with gr.Tab("🔌 API"):
|
| 233 |
+
with gr.Row():
|
| 234 |
+
with gr.Column():
|
| 235 |
+
gr.Markdown("### POST /api/transform")
|
| 236 |
+
api_input = gr.Textbox(
|
| 237 |
+
label="Request JSON",
|
| 238 |
+
value='{"image": "BASE64_STRING", "au_params": {"AU6": 1.0}}',
|
| 239 |
+
lines=5
|
| 240 |
+
)
|
| 241 |
+
api_btn = gr.Button("Test API")
|
| 242 |
+
api_output = gr.JSON(label="Response")
|
| 243 |
+
|
| 244 |
+
api_btn.click(
|
| 245 |
+
fn=lambda x: transform_api(json.loads(x)),
|
| 246 |
+
inputs=[api_input],
|
| 247 |
+
outputs=[api_output]
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
with gr.Column():
|
| 251 |
+
gr.Markdown("### GET /api/health")
|
| 252 |
+
health_btn = gr.Button("Check Health")
|
| 253 |
+
health_output = gr.JSON(label="Health Status")
|
| 254 |
+
|
| 255 |
+
health_btn.click(
|
| 256 |
+
fn=health_check,
|
| 257 |
+
inputs=[],
|
| 258 |
+
outputs=[health_output]
|
| 259 |
+
)
|
| 260 |
|
| 261 |
+
# Add API routes using Gradio's API
|
| 262 |
+
demo.api_names = ["transform", "health", "root"]
|
| 263 |
|
| 264 |
print("✅ Affecto Inference API Ready!")
|
| 265 |
+
print(f"🌐 Gradio UI: https://gauravvjhaa-affecto-inference.hf.space/")
|
| 266 |
+
|
| 267 |
+
# Launch
|
| 268 |
+
if __name__ == "__main__":
|
| 269 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|