Commit
·
4f2c315
1
Parent(s):
347c8ed
add bird sound classification app and update .gitattributes
Browse files- .gitattributes +2 -0
- .gitignore +1 -0
- app.py +47 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.idea
|
app.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import librosa
|
| 4 |
+
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
|
| 5 |
+
|
| 6 |
+
# Load model from Hugging Face Hub
|
| 7 |
+
model_name = "greenarcade/wav2vec2-vd-bird-sound-classification"
|
| 8 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
| 9 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def predict(audio_file):
|
| 13 |
+
# Handle MP3/WAV files
|
| 14 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
| 15 |
+
|
| 16 |
+
# Process audio
|
| 17 |
+
inputs = feature_extractor(
|
| 18 |
+
audio,
|
| 19 |
+
sampling_rate=16000,
|
| 20 |
+
return_tensors="pt",
|
| 21 |
+
padding=True,
|
| 22 |
+
truncation=True,
|
| 23 |
+
max_length=16000 * 5,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Predict
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
logits = model(**inputs).logits
|
| 29 |
+
probs = torch.softmax(logits, dim=-1).squeeze().tolist()
|
| 30 |
+
|
| 31 |
+
# Format results - return actual float values instead of formatted strings
|
| 32 |
+
predictions = {model.config.id2label[i]: prob for i, prob in enumerate(probs)}
|
| 33 |
+
sorted_preds = sorted(predictions.items(), key=lambda x: x[1], reverse=True)[:3]
|
| 34 |
+
return {k: v for k, v in sorted_preds}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
# Gradio Interface
|
| 38 |
+
demo = gr.Interface(
|
| 39 |
+
fn=predict,
|
| 40 |
+
inputs=gr.Audio(sources=["upload"], type="filepath"),
|
| 41 |
+
outputs=gr.Label(num_top_classes=3),
|
| 42 |
+
title="🦜 Bird Sound Classifier (Indian birds)",
|
| 43 |
+
description="Upload a 5-second audio clip to identify bird species",
|
| 44 |
+
examples=[["greyheron-sample.wav"], ["blue-tail-sample.mp3"]]
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
demo.launch()
|