Spaces:
Runtime error
Runtime error
Update server.py
Browse files
server.py
CHANGED
|
@@ -18,7 +18,7 @@ import torchvision
|
|
| 18 |
from torchvision import transforms as T
|
| 19 |
from torchvision.transforms.functional import InterpolationMode
|
| 20 |
|
| 21 |
-
#
|
| 22 |
torch.set_num_threads(1)
|
| 23 |
_INFER_LOCK = threading.Lock()
|
| 24 |
|
|
@@ -28,13 +28,13 @@ MAX_POINTS = int(os.getenv("MAX_POINTS", "240"))
|
|
| 28 |
|
| 29 |
FRESHNESS_NAMES = ["Fresh", "Spoiled"]
|
| 30 |
|
| 31 |
-
#
|
| 32 |
IMG_TX = T.Compose([
|
| 33 |
T.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
|
| 34 |
T.ToTensor()
|
| 35 |
])
|
| 36 |
|
| 37 |
-
#
|
| 38 |
app = FastAPI(title="Fruit Freshness & Gas Detector")
|
| 39 |
app.add_middleware(
|
| 40 |
CORSMiddleware,
|
|
@@ -44,12 +44,12 @@ app.add_middleware(
|
|
| 44 |
LAST = {"vision": None, "vision_updated": None, "gas": None, "gas_updated": None}
|
| 45 |
HISTORY = deque(maxlen=MAX_POINTS)
|
| 46 |
|
| 47 |
-
#
|
| 48 |
class Model(nn.Module):
|
| 49 |
def __init__(self):
|
| 50 |
super().__init__()
|
| 51 |
self.alpha = 0.7
|
| 52 |
-
|
| 53 |
try:
|
| 54 |
self.base = torchvision.models.resnet18(weights=None)
|
| 55 |
except TypeError:
|
|
@@ -129,7 +129,7 @@ def predict_pil(pil: Image.Image):
|
|
| 129 |
raw = {FRESHNESS_NAMES[i]: float(p) for i, p in enumerate(probs_t)}
|
| 130 |
return {"label": label, "confidence": round(conf, 1), "raw": {"probs": raw}}
|
| 131 |
|
| 132 |
-
#
|
| 133 |
@app.post("/predict")
|
| 134 |
async def predict(image: UploadFile = File(...)):
|
| 135 |
try:
|
|
@@ -146,7 +146,7 @@ async def predict(image: UploadFile = File(...)):
|
|
| 146 |
except Exception as e:
|
| 147 |
return JSONResponse({"error": "inference_failed", "detail": str(e)}, status_code=500)
|
| 148 |
|
| 149 |
-
#
|
| 150 |
class GasReading(BaseModel):
|
| 151 |
vrl: Optional[float] = None
|
| 152 |
adc: Optional[int] = None
|
|
@@ -234,14 +234,14 @@ def export_csv():
|
|
| 234 |
headers={"Content-Disposition": 'attachment; filename="gas_history.csv"'}
|
| 235 |
)
|
| 236 |
|
| 237 |
-
#
|
| 238 |
def _summarize(last: dict) -> dict:
|
| 239 |
"""
|
| 240 |
Combine the latest vision prediction and gas ppm into a single, simple decision.
|
| 241 |
- Vision only votes 'rotten' if label says spoiled/rotten AND confidence >= VISION_MIN_CONF.
|
| 242 |
- Any high gas flag can mark the sample as spoiled.
|
| 243 |
"""
|
| 244 |
-
# thresholds
|
| 245 |
VISION_MIN_CONF = 60.0 # %
|
| 246 |
CO2_HI = 2000.0 # ppm
|
| 247 |
NH3_HI = 15.0 # ppm
|
|
|
|
| 18 |
from torchvision import transforms as T
|
| 19 |
from torchvision.transforms.functional import InterpolationMode
|
| 20 |
|
| 21 |
+
# basic config
|
| 22 |
torch.set_num_threads(1)
|
| 23 |
_INFER_LOCK = threading.Lock()
|
| 24 |
|
|
|
|
| 28 |
|
| 29 |
FRESHNESS_NAMES = ["Fresh", "Spoiled"]
|
| 30 |
|
| 31 |
+
# preprocessing
|
| 32 |
IMG_TX = T.Compose([
|
| 33 |
T.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
|
| 34 |
T.ToTensor()
|
| 35 |
])
|
| 36 |
|
| 37 |
+
# FastAPI
|
| 38 |
app = FastAPI(title="Fruit Freshness & Gas Detector")
|
| 39 |
app.add_middleware(
|
| 40 |
CORSMiddleware,
|
|
|
|
| 44 |
LAST = {"vision": None, "vision_updated": None, "gas": None, "gas_updated": None}
|
| 45 |
HISTORY = deque(maxlen=MAX_POINTS)
|
| 46 |
|
| 47 |
+
# model
|
| 48 |
class Model(nn.Module):
|
| 49 |
def __init__(self):
|
| 50 |
super().__init__()
|
| 51 |
self.alpha = 0.7
|
| 52 |
+
|
| 53 |
try:
|
| 54 |
self.base = torchvision.models.resnet18(weights=None)
|
| 55 |
except TypeError:
|
|
|
|
| 129 |
raw = {FRESHNESS_NAMES[i]: float(p) for i, p in enumerate(probs_t)}
|
| 130 |
return {"label": label, "confidence": round(conf, 1), "raw": {"probs": raw}}
|
| 131 |
|
| 132 |
+
# Vision
|
| 133 |
@app.post("/predict")
|
| 134 |
async def predict(image: UploadFile = File(...)):
|
| 135 |
try:
|
|
|
|
| 146 |
except Exception as e:
|
| 147 |
return JSONResponse({"error": "inference_failed", "detail": str(e)}, status_code=500)
|
| 148 |
|
| 149 |
+
# Gas
|
| 150 |
class GasReading(BaseModel):
|
| 151 |
vrl: Optional[float] = None
|
| 152 |
adc: Optional[int] = None
|
|
|
|
| 234 |
headers={"Content-Disposition": 'attachment; filename="gas_history.csv"'}
|
| 235 |
)
|
| 236 |
|
| 237 |
+
# Summary / Health
|
| 238 |
def _summarize(last: dict) -> dict:
|
| 239 |
"""
|
| 240 |
Combine the latest vision prediction and gas ppm into a single, simple decision.
|
| 241 |
- Vision only votes 'rotten' if label says spoiled/rotten AND confidence >= VISION_MIN_CONF.
|
| 242 |
- Any high gas flag can mark the sample as spoiled.
|
| 243 |
"""
|
| 244 |
+
# thresholds
|
| 245 |
VISION_MIN_CONF = 60.0 # %
|
| 246 |
CO2_HI = 2000.0 # ppm
|
| 247 |
NH3_HI = 15.0 # ppm
|