Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,13 +4,28 @@ import numpy as np
|
|
| 4 |
from transformers import DPTForDepthEstimation, DPTImageProcessor
|
| 5 |
import gradio as gr
|
| 6 |
import torch.quantization
|
|
|
|
| 7 |
|
| 8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 9 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float32)
|
| 10 |
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
model = torch.quantization.quantize_dynamic(
|
| 12 |
model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8
|
| 13 |
).to(device)
|
|
|
|
| 14 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
| 15 |
|
| 16 |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
|
|
|
|
| 4 |
from transformers import DPTForDepthEstimation, DPTImageProcessor
|
| 5 |
import gradio as gr
|
| 6 |
import torch.quantization
|
| 7 |
+
import torch.nn.utils.prune as prune
|
| 8 |
|
| 9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
|
| 11 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float32)
|
| 12 |
model.eval()
|
| 13 |
+
|
| 14 |
+
# Apply global unstructured pruning
|
| 15 |
+
parameters_to_prune = [
|
| 16 |
+
(module, "weight") for module in filter(lambda m: isinstance(m, (torch.nn.Conv2d, torch.nn.Linear)), model.modules())
|
| 17 |
+
]
|
| 18 |
+
prune.global_unstructured(
|
| 19 |
+
parameters_to_prune,
|
| 20 |
+
pruning_method=prune.L1Unstructured,
|
| 21 |
+
amount=0.4, # Prune 40% of weights
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Apply quantization after pruning
|
| 25 |
model = torch.quantization.quantize_dynamic(
|
| 26 |
model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8
|
| 27 |
).to(device)
|
| 28 |
+
|
| 29 |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
|
| 30 |
|
| 31 |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
|