File size: 10,120 Bytes
dd19932
61fb024
 
 
 
 
 
 
 
 
 
 
2262f59
 
61fb024
dd19932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5565cf6
dd19932
 
 
 
61fb024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5565cf6
61fb024
 
 
 
dd19932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61fb024
dd19932
 
 
 
 
61fb024
 
 
dd19932
 
 
 
f4b6beb
 
 
 
 
 
 
61fb024
 
 
 
 
 
 
 
 
 
 
dd19932
2262f59
 
 
 
 
dd19932
 
61fb024
 
 
 
 
 
 
 
 
 
 
4adf18d
 
5565cf6
2262f59
4adf18d
61fb024
5565cf6
61fb024
 
dd19932
 
 
 
 
 
 
 
 
 
 
 
 
 
61fb024
 
 
 
 
 
 
 
 
 
 
 
 
 
2262f59
 
 
 
61fb024
 
 
 
 
 
 
 
 
 
 
2262f59
61fb024
 
2262f59
e8c0366
2262f59
 
61fb024
 
 
dd19932
 
 
 
 
 
 
 
61fb024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd19932
 
 
5565cf6
dd19932
 
 
 
 
 
61fb024
 
 
 
 
 
 
 
 
 
5565cf6
61fb024
 
 
 
4adf18d
61fb024
 
dd19932
 
 
 
 
 
 
 
 
 
 
 
61fb024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8c0366
 
61fb024
 
dd19932
61fb024
 
dd19932
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import gradio as gr
from openfda_client import (
    get_top_adverse_events, 
    get_drug_event_pair_frequency, 
    get_serious_outcomes,
    get_time_series_data,
    get_report_source_data
)
from plotting import (
    create_bar_chart, 
    create_outcome_chart,
    create_time_series_chart,
    create_pie_chart,
    create_placeholder_chart
)
import pandas as pd

# --- Formatting Functions ---

def format_top_events_results(data: dict, drug_name: str) -> str:
    """Formats the results for the top adverse events tool."""
    if "error" in data:
        return f"An error occurred: {data['error']}"
    
    if "results" not in data or not data["results"]:
        return f"No adverse event data found for '{drug_name}'. The drug may not be in the database or it might be misspelled."

    header = f"Top Adverse Events for '{drug_name.title()}'\n"
    header += "Source: FDA FAERS via OpenFDA\n"
    header += "Disclaimer: Spontaneous reports do not prove causation. Consult a healthcare professional.\n"
    header += "---------------------------------------------------\n"

    try:
        df = pd.DataFrame(data["results"])
        df = df.rename(columns={"term": "Adverse Event", "count": "Report Count"})
        result_string = df.to_string(index=False)
        return header + result_string
    except Exception as e:
        return f"An error occurred while formatting the data: {e}"

def format_serious_outcomes_results(data: dict, drug_name: str) -> str:
    """Formats the results for the serious outcomes tool."""
    if "error" in data:
        return f"An error occurred: {data['error']}"
    
    if "results" not in data or not data["results"]:
        return f"No serious outcome data found for '{drug_name}'. The drug may not be in the database or it might be misspelled."

    header = f"Top Serious Outcomes for '{drug_name.title()}'\n"
    header += "Source: FDA FAERS via OpenFDA\n"
    header += "Disclaimer: Spontaneous reports do not prove causation. Consult a healthcare professional.\n"
    header += "---------------------------------------------------\n"

    try:
        df = pd.DataFrame(data["results"])
        df = df.rename(columns={"term": "Serious Outcome", "count": "Report Count"})
        result_string = df.to_string(index=False)
        return header + result_string
    except Exception as e:
        return f"An error occurred while formatting the data: {e}"

def format_pair_frequency_results(data: dict, drug_name: str, event_name: str) -> str:
    """Formats the results for the drug-event pair frequency tool."""
    if "error" in data:
        return f"An error occurred: {data['error']}"
    
    total_reports = data.get("meta", {}).get("results", {}).get("total", 0)

    result = (
        f"Found {total_reports:,} reports for the combination of "
        f"'{drug_name.title()}' and '{event_name.title()}'.\n\n"
        "Source: FDA FAERS via OpenFDA\n"
        "Disclaimer: Spontaneous reports do not prove causation. Consult a healthcare professional."
    )
    return result

# --- Tool Functions ---

def top_adverse_events_tool(drug_name: str, patient_sex: str = "all", min_age: int = 0, max_age: int = 120):
    """
    MCP Tool: Finds the top reported adverse events for a given drug.

    Args:
        drug_name (str): The name of the drug to search for.
        patient_sex (str): The patient's sex to filter by.
        min_age (int): The minimum age for the filter.
        max_age (int): The maximum age for the filter.
    
    Returns:
        tuple: A Plotly figure and a formatted string with the top adverse events.
    """
    if patient_sex is None:
        patient_sex = "all"
    if min_age is None:
        min_age = 0
    if max_age is None:
        max_age = 120

    sex_code = None
    if patient_sex == "Male":
        sex_code = "1"
    elif patient_sex == "Female":
        sex_code = "2"
    
    age_range = None
    if min_age > 0 or max_age < 120:
        age_range = (min_age, max_age)

    data = get_top_adverse_events(drug_name, patient_sex=sex_code, age_range=age_range)
    text_summary = format_top_events_results(data, drug_name)

    if "error" in data or not data.get("results"):
        return None, text_summary
        
    chart = create_bar_chart(data, drug_name)
    return chart, text_summary

def serious_outcomes_tool(drug_name: str):
    """
    MCP Tool: Finds the top reported serious outcomes for a given drug.

    Args:
        drug_name (str): The name of the drug to search for.
    
    Returns:
        tuple: A Plotly figure and a formatted string with the top serious outcomes.
    """
    data = get_serious_outcomes(drug_name)

    if "error" in data or not data.get("results"):
        text_summary = format_serious_outcomes_results(data, drug_name)
        return None, text_summary
    
    chart = create_outcome_chart(data, drug_name)
    text_summary = format_serious_outcomes_results(data, drug_name)
    return chart, text_summary

def drug_event_stats_tool(drug_name: str, event_name: str):
    """
    MCP Tool: Gets the total number of reports for a specific drug and adverse event pair.

    Args:
        drug_name (str): The name of the drug to search for.
        event_name (str): The name of the adverse event to search for.
    
    Returns:
        str: A formatted string with the total count of reports.
    """
    data = get_drug_event_pair_frequency(drug_name, event_name)
    return format_pair_frequency_results(data, drug_name, event_name)

def time_series_tool(drug_name: str, event_name: str, aggregation: str):
    """
    MCP Tool: Creates a time-series plot for a drug-event pair.

    Args:
        drug_name (str): The name of the drug.
        event_name (str): The name of the adverse event.
        aggregation (str): Time aggregation ('Yearly' or 'Quarterly').

    Returns:
        A Plotly figure.
    """
    agg_code = 'Y' if aggregation == 'Yearly' else 'Q'
    data = get_time_series_data(drug_name, event_name)
    
    if "error" in data or not data.get("results"):
        return create_placeholder_chart(f"No time-series data found for '{drug_name}' and '{event_name}'.")

    chart = create_time_series_chart(data, drug_name, event_name, time_aggregation=agg_code)
    return chart

def report_source_tool(drug_name: str):
    """
    MCP Tool: Creates a pie chart of report sources for a given drug.

    Args:
        drug_name (str): The name of the drug.

    Returns:
        A Plotly figure.
    """
    data = get_report_source_data(drug_name)

    if not data or not data.get("results"):
        return create_placeholder_chart(f"No report source data found for '{drug_name}'.")

    chart = create_pie_chart(data, drug_name)
    return chart

# --- Gradio Interface ---

interface1 = gr.Interface(
    fn=top_adverse_events_tool,
    inputs=[
        gr.Textbox(
            label="Drug Name", 
            info="Enter a brand or generic drug name (e.g., 'Aspirin', 'Lisinopril')."
        ),
        gr.Radio(
            ["All", "Male", "Female"], 
            label="Patient Sex", 
            value="All"
        ),
        gr.Slider(
            0, 120, 
            value=0, 
            label="Minimum Age", 
            step=1
        ),
        gr.Slider(
            0, 120, 
            value=120, 
            label="Maximum Age", 
            step=1
        ),
    ],
    outputs=[
        gr.Plot(label="Top Adverse Events Chart"),
        gr.Textbox(label="Top Adverse Events (Raw Data)", lines=15)
    ],
    title="Top Adverse Events by Drug",
    description="Find the most frequently reported adverse events for a specific medication.",
    examples=[["Lisinopril"], ["Ozempic"], ["Metformin"]],
)

interface3 = gr.Interface(
    fn=serious_outcomes_tool,
    inputs=[
        gr.Textbox(
            label="Drug Name", 
            info="Enter a brand or generic drug name (e.g., 'Aspirin', 'Lisinopril')."
        )
    ],
    outputs=[
        gr.Plot(label="Top Serious Outcomes Chart"),
        gr.Textbox(label="Top Serious Outcomes (Raw Data)", lines=15)
    ],
    title="Serious Outcome Analysis",
    description="Find the most frequently reported serious outcomes (e.g., hospitalization, death) for a specific medication.",
    examples=[["Lisinopril"], ["Ozempic"], ["Metformin"]],
    allow_flagging="never"
)

interface2 = gr.Interface(
    fn=drug_event_stats_tool,
    inputs=[
        gr.Textbox(label="Drug Name", info="e.g., 'Ibuprofen'"),
        gr.Textbox(label="Adverse Event", info="e.g., 'Headache'")
    ],
    outputs=[gr.Textbox(label="Report Count", lines=5)],
    title="Drug/Event Pair Frequency",
    description="Get the total number of reports for a specific drug and adverse event combination.",
    examples=[["Lisinopril", "Cough"], ["Ozempic", "Nausea"]],
)

interface4 = gr.Interface(
    fn=time_series_tool,
    inputs=[
        gr.Textbox(label="Drug Name", info="e.g., 'Ibuprofen'"),
        gr.Textbox(label="Adverse Event", info="e.g., 'Headache'"),
        gr.Radio(["Yearly", "Quarterly"], label="Aggregation", value="Yearly")
    ],
    outputs=[gr.Plot(label="Report Trends")],
    title="Time-Series Trend Plotting",
    description="Plot the number of adverse event reports over time for a specific drug-event pair.",
    examples=[["Lisinopril", "Cough", "Yearly"], ["Ozempic", "Nausea", "Quarterly"]],
)

interface5 = gr.Interface(
    fn=report_source_tool,
    inputs=[
        gr.Textbox(label="Drug Name", info="e.g., 'Aspirin', 'Lisinopril'")
    ],
    outputs=[gr.Plot(label="Report Source Breakdown")],
    title="Report Source Breakdown",
    description="Show a pie chart breaking down the source of the reports (e.g., Consumer, Physician).",
    examples=[["Lisinopril"], ["Ibuprofen"]],
    allow_flagging="never"
)

demo = gr.TabbedInterface(
    [interface1, interface3, interface2, interface4, interface5], 
    ["Top Events", "Serious Outcomes", "Event Frequency", "Time-Series Trends", "Report Sources"],
    title="Medication Adverse-Event Explorer"
)

if __name__ == "__main__":
    demo.launch(mcp_server=True, server_name="0.0.0.0")