Spaces:
Runtime error
Runtime error
Create wav2vec2.py
Browse files- wav2vec2.py +1499 -0
wav2vec2.py
ADDED
|
@@ -0,0 +1,1499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the MIT license found in the
|
| 4 |
+
# LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
import math
|
| 7 |
+
from dataclasses import dataclass, field
|
| 8 |
+
from typing import List, Tuple
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
|
| 15 |
+
from fairseq import utils
|
| 16 |
+
from fairseq.data.data_utils import compute_mask_indices
|
| 17 |
+
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
|
| 18 |
+
from fairseq.distributed import fsdp_wrap
|
| 19 |
+
from fairseq.models import BaseFairseqModel, register_model
|
| 20 |
+
from fairseq.distributed.fully_sharded_data_parallel import FullyShardedDataParallel
|
| 21 |
+
from fairseq.modules import (
|
| 22 |
+
Fp32GroupNorm,
|
| 23 |
+
Fp32LayerNorm,
|
| 24 |
+
GradMultiply,
|
| 25 |
+
GumbelVectorQuantizer,
|
| 26 |
+
LayerNorm,
|
| 27 |
+
MultiheadAttention,
|
| 28 |
+
RelPositionalEncoding,
|
| 29 |
+
SamePad,
|
| 30 |
+
TransposeLast,
|
| 31 |
+
)
|
| 32 |
+
from fairseq.modules.checkpoint_activations import checkpoint_wrapper
|
| 33 |
+
from fairseq.modules.conformer_layer import ConformerWav2Vec2EncoderLayer
|
| 34 |
+
from fairseq.modules.transformer_sentence_encoder import init_bert_params
|
| 35 |
+
from fairseq.utils import buffered_arange, index_put, is_xla_tensor
|
| 36 |
+
|
| 37 |
+
from fairseq.models.wav2vec.utils import pad_to_multiple
|
| 38 |
+
|
| 39 |
+
EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"])
|
| 40 |
+
MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"])
|
| 41 |
+
LAYER_TYPE_CHOICES = ChoiceEnum(["transformer", "conformer", "trf_adp"])
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@dataclass
|
| 45 |
+
class Wav2Vec2Config(FairseqDataclass):
|
| 46 |
+
extractor_mode: EXTRACTOR_MODE_CHOICES = field(
|
| 47 |
+
default="default",
|
| 48 |
+
metadata={
|
| 49 |
+
"help": "mode for feature extractor. default has a single group norm with d "
|
| 50 |
+
"groups in the first conv block, whereas layer_norm has layer norms in "
|
| 51 |
+
"every block (meant to use with normalize=True)"
|
| 52 |
+
},
|
| 53 |
+
)
|
| 54 |
+
encoder_layers: int = field(
|
| 55 |
+
default=12, metadata={"help": "num encoder layers in the transformer"}
|
| 56 |
+
)
|
| 57 |
+
encoder_embed_dim: int = field(
|
| 58 |
+
default=768, metadata={"help": "encoder embedding dimension"}
|
| 59 |
+
)
|
| 60 |
+
encoder_ffn_embed_dim: int = field(
|
| 61 |
+
default=3072, metadata={"help": "encoder embedding dimension for FFN"}
|
| 62 |
+
)
|
| 63 |
+
encoder_attention_heads: int = field(
|
| 64 |
+
default=12, metadata={"help": "num encoder attention heads"}
|
| 65 |
+
)
|
| 66 |
+
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
|
| 67 |
+
default="gelu", metadata={"help": "activation function to use"}
|
| 68 |
+
)
|
| 69 |
+
layer_type: LAYER_TYPE_CHOICES = field(
|
| 70 |
+
default="transformer", metadata={"help": "layer type in encoder"}
|
| 71 |
+
)
|
| 72 |
+
# dropouts
|
| 73 |
+
dropout: float = field(
|
| 74 |
+
default=0.1, metadata={"help": "dropout probability for the transformer"}
|
| 75 |
+
)
|
| 76 |
+
attention_dropout: float = field(
|
| 77 |
+
default=0.1, metadata={"help": "dropout probability for attention weights"}
|
| 78 |
+
)
|
| 79 |
+
activation_dropout: float = field(
|
| 80 |
+
default=0.0, metadata={"help": "dropout probability after activation in FFN"}
|
| 81 |
+
)
|
| 82 |
+
encoder_layerdrop: float = field(
|
| 83 |
+
default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"}
|
| 84 |
+
)
|
| 85 |
+
dropout_input: float = field(
|
| 86 |
+
default=0.0,
|
| 87 |
+
metadata={"help": "dropout to apply to the input (after feat extr)"},
|
| 88 |
+
)
|
| 89 |
+
dropout_features: float = field(
|
| 90 |
+
default=0.0,
|
| 91 |
+
metadata={"help": "dropout to apply to the features (after feat extr)"},
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
final_dim: int = field(
|
| 95 |
+
default=0,
|
| 96 |
+
metadata={
|
| 97 |
+
"help": "project final representations and targets to this many dimensions."
|
| 98 |
+
"set to encoder_embed_dim is <= 0"
|
| 99 |
+
},
|
| 100 |
+
)
|
| 101 |
+
layer_norm_first: bool = field(
|
| 102 |
+
default=False, metadata={"help": "apply layernorm first in the transformer"}
|
| 103 |
+
)
|
| 104 |
+
input_feature_ndim: int = field(
|
| 105 |
+
default=40,
|
| 106 |
+
metadata={"help": "number of mfcc/fbank feature dimensions, e.g. 40"}
|
| 107 |
+
)
|
| 108 |
+
conv_feature_layers: str = field(
|
| 109 |
+
default="[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]",
|
| 110 |
+
metadata={
|
| 111 |
+
"help": "string describing convolutional feature extraction layers in form of a python list that contains "
|
| 112 |
+
"[(dim, kernel_size, stride), ...]"
|
| 113 |
+
},
|
| 114 |
+
)
|
| 115 |
+
conv_bias: bool = field(
|
| 116 |
+
default=False, metadata={"help": "include bias in conv encoder"}
|
| 117 |
+
)
|
| 118 |
+
logit_temp: float = field(
|
| 119 |
+
default=0.1, metadata={"help": "temperature to divide logits by"}
|
| 120 |
+
)
|
| 121 |
+
quantize_targets: bool = field(
|
| 122 |
+
default=False, metadata={"help": "use quantized targets"}
|
| 123 |
+
)
|
| 124 |
+
quantize_input: bool = field(
|
| 125 |
+
default=False, metadata={"help": "use quantized inputs"}
|
| 126 |
+
)
|
| 127 |
+
same_quantizer: bool = field(
|
| 128 |
+
default=False, metadata={"help": "use same quantizer for inputs and targets"}
|
| 129 |
+
)
|
| 130 |
+
target_glu: bool = field(
|
| 131 |
+
default=False, metadata={"help": "adds projection + glu to targets"}
|
| 132 |
+
)
|
| 133 |
+
feature_grad_mult: float = field(
|
| 134 |
+
default=1.0, metadata={"help": "multiply feature extractor var grads by this"}
|
| 135 |
+
)
|
| 136 |
+
quantizer_depth: int = field(
|
| 137 |
+
default=1,
|
| 138 |
+
metadata={"help": "number of quantizer layers"},
|
| 139 |
+
)
|
| 140 |
+
quantizer_factor: int = field(
|
| 141 |
+
default=3,
|
| 142 |
+
metadata={
|
| 143 |
+
"help": "dimensionality increase for inner quantizer layers (if depth > 1)"
|
| 144 |
+
},
|
| 145 |
+
)
|
| 146 |
+
latent_vars: int = field(
|
| 147 |
+
default=320,
|
| 148 |
+
metadata={"help": "number of latent variables V in each group of the codebook"},
|
| 149 |
+
)
|
| 150 |
+
latent_groups: int = field(
|
| 151 |
+
default=2,
|
| 152 |
+
metadata={"help": "number of groups G of latent variables in the codebook"},
|
| 153 |
+
)
|
| 154 |
+
latent_dim: int = field(
|
| 155 |
+
default=0,
|
| 156 |
+
metadata={
|
| 157 |
+
"help": "if > 0, uses this dimensionality for latent variables. "
|
| 158 |
+
"otherwise uses final_dim / latent_groups"
|
| 159 |
+
},
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# masking
|
| 163 |
+
mask_length: int = field(default=10, metadata={"help": "mask length"})
|
| 164 |
+
mask_prob: float = field(
|
| 165 |
+
default=0.65, metadata={"help": "probability of replacing a token with mask"}
|
| 166 |
+
)
|
| 167 |
+
mask_selection: MASKING_DISTRIBUTION_CHOICES = field(
|
| 168 |
+
default="static", metadata={"help": "how to choose mask length"}
|
| 169 |
+
)
|
| 170 |
+
mask_other: float = field(
|
| 171 |
+
default=0,
|
| 172 |
+
metadata={
|
| 173 |
+
"help": "secondary mask argument (used for more complex distributions), "
|
| 174 |
+
"see help in compute_mask_indices"
|
| 175 |
+
},
|
| 176 |
+
)
|
| 177 |
+
no_mask_overlap: bool = field(
|
| 178 |
+
default=False, metadata={"help": "whether to allow masks to overlap"}
|
| 179 |
+
)
|
| 180 |
+
mask_min_space: int = field(
|
| 181 |
+
default=1,
|
| 182 |
+
metadata={"help": "min space between spans (if no overlap is enabled)"},
|
| 183 |
+
)
|
| 184 |
+
require_same_masks: bool = field(
|
| 185 |
+
default=True,
|
| 186 |
+
metadata={
|
| 187 |
+
"help": "whether to number of masked timesteps must be the same across all "
|
| 188 |
+
"examples in a batch"
|
| 189 |
+
},
|
| 190 |
+
)
|
| 191 |
+
mask_dropout: float = field(
|
| 192 |
+
default=0.0,
|
| 193 |
+
metadata={"help": "percent of masks to unmask for each sample"},
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
# channel masking
|
| 197 |
+
mask_channel_length: int = field(
|
| 198 |
+
default=10, metadata={"help": "length of the mask for features (channels)"}
|
| 199 |
+
)
|
| 200 |
+
mask_channel_prob: float = field(
|
| 201 |
+
default=0.0, metadata={"help": "probability of replacing a feature with 0"}
|
| 202 |
+
)
|
| 203 |
+
mask_channel_before: bool = False
|
| 204 |
+
mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field(
|
| 205 |
+
default="static",
|
| 206 |
+
metadata={"help": "how to choose mask length for channel masking"},
|
| 207 |
+
)
|
| 208 |
+
mask_channel_other: float = field(
|
| 209 |
+
default=0,
|
| 210 |
+
metadata={
|
| 211 |
+
"help": "secondary mask argument (used for more complex distributions), "
|
| 212 |
+
"see help in compute_mask_indicesh"
|
| 213 |
+
},
|
| 214 |
+
)
|
| 215 |
+
no_mask_channel_overlap: bool = field(
|
| 216 |
+
default=False, metadata={"help": "whether to allow channel masks to overlap"}
|
| 217 |
+
)
|
| 218 |
+
mask_channel_min_space: int = field(
|
| 219 |
+
default=1,
|
| 220 |
+
metadata={"help": "min space between spans (if no overlap is enabled)"},
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# negative selection
|
| 224 |
+
num_negatives: int = field(
|
| 225 |
+
default=100,
|
| 226 |
+
metadata={"help": "number of negative examples from the same sample"},
|
| 227 |
+
)
|
| 228 |
+
negatives_from_everywhere: bool = field(
|
| 229 |
+
default=False,
|
| 230 |
+
metadata={"help": "sample negatives from everywhere, not just masked states"},
|
| 231 |
+
)
|
| 232 |
+
cross_sample_negatives: int = field(
|
| 233 |
+
default=0, metadata={"help": "number of negative examples from the any sample"}
|
| 234 |
+
)
|
| 235 |
+
codebook_negatives: int = field(
|
| 236 |
+
default=0, metadata={"help": "number of negative examples codebook"}
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
# positional embeddings
|
| 240 |
+
conv_pos: int = field(
|
| 241 |
+
default=128,
|
| 242 |
+
metadata={"help": "number of filters for convolutional positional embeddings"},
|
| 243 |
+
)
|
| 244 |
+
conv_pos_groups: int = field(
|
| 245 |
+
default=16,
|
| 246 |
+
metadata={"help": "number of groups for convolutional positional embedding"},
|
| 247 |
+
)
|
| 248 |
+
pos_conv_depth: int = field(
|
| 249 |
+
default=1,
|
| 250 |
+
metadata={"help": "depth of positional encoder network"},
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
latent_temp: Tuple[float, float, float] = field(
|
| 254 |
+
default=(2, 0.5, 0.999995),
|
| 255 |
+
metadata={
|
| 256 |
+
"help": "temperature for latent variable sampling. "
|
| 257 |
+
"can be tuple of 3 values (start, end, decay)"
|
| 258 |
+
},
|
| 259 |
+
)
|
| 260 |
+
max_positions: int = field(default=100000, metadata={"help": "Max positions"})
|
| 261 |
+
checkpoint_activations: bool = field(
|
| 262 |
+
default=False,
|
| 263 |
+
metadata={"help": "recompute activations and save memory for extra compute"},
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
# FP16 optimization
|
| 267 |
+
required_seq_len_multiple: int = field(
|
| 268 |
+
default=2,
|
| 269 |
+
metadata={
|
| 270 |
+
"help": "pad the input to encoder such that the sequence length is divisible by multiple"
|
| 271 |
+
},
|
| 272 |
+
)
|
| 273 |
+
crop_seq_to_multiple: int = field(
|
| 274 |
+
default=1,
|
| 275 |
+
metadata={
|
| 276 |
+
"help": "crop convolutional feature extractor output such that the sequence length is divisible by multiple"
|
| 277 |
+
},
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# Conformer
|
| 281 |
+
depthwise_conv_kernel_size: int = field(
|
| 282 |
+
default=31,
|
| 283 |
+
metadata={
|
| 284 |
+
"help": "depthwise-conv-kernel-size for convolution in conformer layer"
|
| 285 |
+
},
|
| 286 |
+
)
|
| 287 |
+
attn_type: str = field(
|
| 288 |
+
default="",
|
| 289 |
+
metadata={"help": "if espnet use ESPNET MHA"},
|
| 290 |
+
)
|
| 291 |
+
pos_enc_type: str = field(
|
| 292 |
+
default="abs",
|
| 293 |
+
metadata={"help": "Positional encoding type to use in conformer"},
|
| 294 |
+
)
|
| 295 |
+
fp16: bool = field(default=False, metadata={"help": "If fp16 is being used"})
|
| 296 |
+
|
| 297 |
+
# Adapter num
|
| 298 |
+
adp_num: int = field(
|
| 299 |
+
default=-1
|
| 300 |
+
)
|
| 301 |
+
adp_dim: int = field(
|
| 302 |
+
default=64
|
| 303 |
+
)
|
| 304 |
+
adp_act_fn: str = field(
|
| 305 |
+
default="relu"
|
| 306 |
+
)
|
| 307 |
+
adp_trf_idx: str = field(
|
| 308 |
+
default="all",
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
@register_model("wav2vec2", dataclass=Wav2Vec2Config)
|
| 313 |
+
class Wav2Vec2Model(BaseFairseqModel):
|
| 314 |
+
def __init__(self, cfg: Wav2Vec2Config):
|
| 315 |
+
super().__init__()
|
| 316 |
+
self.cfg = cfg
|
| 317 |
+
|
| 318 |
+
feature_enc_layers = eval(cfg.conv_feature_layers)
|
| 319 |
+
self.embed = feature_enc_layers[-1][0]
|
| 320 |
+
|
| 321 |
+
self.feature_extractor = ConvFeatureExtractionModel(
|
| 322 |
+
conv_layers=feature_enc_layers,
|
| 323 |
+
dropout=0.0,
|
| 324 |
+
mode=cfg.extractor_mode,
|
| 325 |
+
conv_bias=cfg.conv_bias,
|
| 326 |
+
input_feature_ndim=cfg.input_feature_ndim
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
self.post_extract_proj = (
|
| 330 |
+
nn.Linear(self.embed, cfg.encoder_embed_dim)
|
| 331 |
+
if self.embed != cfg.encoder_embed_dim and not cfg.quantize_input
|
| 332 |
+
else None
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
self.crop_seq_to_multiple = cfg.crop_seq_to_multiple
|
| 336 |
+
|
| 337 |
+
self.mask_prob = cfg.mask_prob
|
| 338 |
+
self.mask_selection = cfg.mask_selection
|
| 339 |
+
self.mask_other = cfg.mask_other
|
| 340 |
+
self.mask_length = cfg.mask_length
|
| 341 |
+
self.no_mask_overlap = cfg.no_mask_overlap
|
| 342 |
+
self.mask_min_space = cfg.mask_min_space
|
| 343 |
+
|
| 344 |
+
self.mask_channel_prob = cfg.mask_channel_prob
|
| 345 |
+
self.mask_channel_before = cfg.mask_channel_before
|
| 346 |
+
self.mask_channel_selection = cfg.mask_channel_selection
|
| 347 |
+
self.mask_channel_other = cfg.mask_channel_other
|
| 348 |
+
self.mask_channel_length = cfg.mask_channel_length
|
| 349 |
+
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
|
| 350 |
+
self.mask_channel_min_space = cfg.mask_channel_min_space
|
| 351 |
+
|
| 352 |
+
self.dropout_input = nn.Dropout(cfg.dropout_input)
|
| 353 |
+
self.dropout_features = nn.Dropout(cfg.dropout_features)
|
| 354 |
+
|
| 355 |
+
self.feature_grad_mult = cfg.feature_grad_mult
|
| 356 |
+
|
| 357 |
+
self.quantizer = None
|
| 358 |
+
self.input_quantizer = None
|
| 359 |
+
|
| 360 |
+
self.n_negatives = cfg.num_negatives
|
| 361 |
+
self.cross_sample_negatives = cfg.cross_sample_negatives
|
| 362 |
+
self.codebook_negatives = cfg.codebook_negatives
|
| 363 |
+
self.negatives_from_everywhere = cfg.negatives_from_everywhere
|
| 364 |
+
|
| 365 |
+
self.logit_temp = cfg.logit_temp
|
| 366 |
+
|
| 367 |
+
final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim
|
| 368 |
+
|
| 369 |
+
if cfg.quantize_targets:
|
| 370 |
+
vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else final_dim
|
| 371 |
+
self.quantizer = GumbelVectorQuantizer(
|
| 372 |
+
dim=self.embed,
|
| 373 |
+
num_vars=cfg.latent_vars,
|
| 374 |
+
temp=cfg.latent_temp,
|
| 375 |
+
groups=cfg.latent_groups,
|
| 376 |
+
combine_groups=False,
|
| 377 |
+
vq_dim=vq_dim,
|
| 378 |
+
time_first=True,
|
| 379 |
+
weight_proj_depth=cfg.quantizer_depth,
|
| 380 |
+
weight_proj_factor=cfg.quantizer_factor,
|
| 381 |
+
)
|
| 382 |
+
self.project_q = nn.Linear(vq_dim, final_dim)
|
| 383 |
+
else:
|
| 384 |
+
self.project_q = nn.Linear(self.embed, final_dim)
|
| 385 |
+
|
| 386 |
+
if cfg.quantize_input:
|
| 387 |
+
if cfg.same_quantizer and self.quantizer is not None:
|
| 388 |
+
vq_dim = final_dim
|
| 389 |
+
self.input_quantizer = self.quantizer
|
| 390 |
+
else:
|
| 391 |
+
vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else cfg.encoder_embed_dim
|
| 392 |
+
self.input_quantizer = GumbelVectorQuantizer(
|
| 393 |
+
dim=self.embed,
|
| 394 |
+
num_vars=cfg.latent_vars,
|
| 395 |
+
temp=cfg.latent_temp,
|
| 396 |
+
groups=cfg.latent_groups,
|
| 397 |
+
combine_groups=False,
|
| 398 |
+
vq_dim=vq_dim,
|
| 399 |
+
time_first=True,
|
| 400 |
+
weight_proj_depth=cfg.quantizer_depth,
|
| 401 |
+
weight_proj_factor=cfg.quantizer_factor,
|
| 402 |
+
)
|
| 403 |
+
self.project_inp = nn.Linear(vq_dim, cfg.encoder_embed_dim)
|
| 404 |
+
|
| 405 |
+
self.mask_emb = nn.Parameter(
|
| 406 |
+
torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
|
| 407 |
+
)
|
| 408 |
+
encoder_cls = TransformerEncoder
|
| 409 |
+
if cfg.layer_type == "conformer" and cfg.pos_enc_type in ["rel_pos", "rope"]:
|
| 410 |
+
encoder_cls = ConformerEncoder
|
| 411 |
+
|
| 412 |
+
self.encoder = encoder_cls(cfg)
|
| 413 |
+
self.layer_norm = LayerNorm(self.embed)
|
| 414 |
+
|
| 415 |
+
self.target_glu = None
|
| 416 |
+
if cfg.target_glu:
|
| 417 |
+
self.target_glu = nn.Sequential(
|
| 418 |
+
nn.Linear(final_dim, final_dim * 2), nn.GLU()
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim)
|
| 422 |
+
|
| 423 |
+
def upgrade_state_dict_named(self, state_dict, name):
|
| 424 |
+
super().upgrade_state_dict_named(state_dict, name)
|
| 425 |
+
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
|
| 426 |
+
return state_dict
|
| 427 |
+
|
| 428 |
+
@classmethod
|
| 429 |
+
def build_model(cls, cfg: Wav2Vec2Config, task=None):
|
| 430 |
+
"""Build a new model instance."""
|
| 431 |
+
|
| 432 |
+
return cls(cfg)
|
| 433 |
+
|
| 434 |
+
def apply_mask(
|
| 435 |
+
self,
|
| 436 |
+
x,
|
| 437 |
+
padding_mask,
|
| 438 |
+
mask_indices=None,
|
| 439 |
+
mask_channel_indices=None,
|
| 440 |
+
):
|
| 441 |
+
B, T, C = x.shape
|
| 442 |
+
|
| 443 |
+
if self.mask_channel_prob > 0 and self.mask_channel_before:
|
| 444 |
+
mask_channel_indices = compute_mask_indices(
|
| 445 |
+
(B, C),
|
| 446 |
+
None,
|
| 447 |
+
self.mask_channel_prob,
|
| 448 |
+
self.mask_channel_length,
|
| 449 |
+
self.mask_channel_selection,
|
| 450 |
+
self.mask_channel_other,
|
| 451 |
+
no_overlap=self.no_mask_channel_overlap,
|
| 452 |
+
min_space=self.mask_channel_min_space,
|
| 453 |
+
)
|
| 454 |
+
mask_channel_indices = (
|
| 455 |
+
torch.from_numpy(mask_channel_indices)
|
| 456 |
+
.to(x.device)
|
| 457 |
+
.unsqueeze(1)
|
| 458 |
+
.expand(-1, T, -1)
|
| 459 |
+
)
|
| 460 |
+
x[mask_channel_indices] = 0
|
| 461 |
+
|
| 462 |
+
if self.mask_prob > 0:
|
| 463 |
+
if mask_indices is None:
|
| 464 |
+
mask_indices = compute_mask_indices(
|
| 465 |
+
(B, T),
|
| 466 |
+
padding_mask,
|
| 467 |
+
self.mask_prob,
|
| 468 |
+
self.mask_length,
|
| 469 |
+
self.mask_selection,
|
| 470 |
+
self.mask_other,
|
| 471 |
+
min_masks=2,
|
| 472 |
+
no_overlap=self.no_mask_overlap,
|
| 473 |
+
min_space=self.mask_min_space,
|
| 474 |
+
require_same_masks=self.cfg.require_same_masks,
|
| 475 |
+
mask_dropout=self.cfg.mask_dropout,
|
| 476 |
+
)
|
| 477 |
+
mask_indices = torch.from_numpy(mask_indices).to(x.device)
|
| 478 |
+
x = index_put(x, mask_indices, self.mask_emb)
|
| 479 |
+
else:
|
| 480 |
+
mask_indices = None
|
| 481 |
+
|
| 482 |
+
if self.mask_channel_prob > 0 and not self.mask_channel_before:
|
| 483 |
+
if mask_channel_indices is None:
|
| 484 |
+
mask_channel_indices = compute_mask_indices(
|
| 485 |
+
(B, C),
|
| 486 |
+
None,
|
| 487 |
+
self.mask_channel_prob,
|
| 488 |
+
self.mask_channel_length,
|
| 489 |
+
self.mask_channel_selection,
|
| 490 |
+
self.mask_channel_other,
|
| 491 |
+
no_overlap=self.no_mask_channel_overlap,
|
| 492 |
+
min_space=self.mask_channel_min_space,
|
| 493 |
+
)
|
| 494 |
+
mask_channel_indices = (
|
| 495 |
+
torch.from_numpy(mask_channel_indices)
|
| 496 |
+
.to(x.device)
|
| 497 |
+
.unsqueeze(1)
|
| 498 |
+
.expand(-1, T, -1)
|
| 499 |
+
)
|
| 500 |
+
x = index_put(x, mask_channel_indices, 0)
|
| 501 |
+
|
| 502 |
+
return x, mask_indices
|
| 503 |
+
|
| 504 |
+
def sample_negatives(self, y, num, padding_count=None):
|
| 505 |
+
|
| 506 |
+
if self.n_negatives == 0 and self.cross_sample_negatives == 0:
|
| 507 |
+
return y.new(0)
|
| 508 |
+
|
| 509 |
+
bsz, tsz, fsz = y.shape
|
| 510 |
+
y = y.view(-1, fsz) # BTC => (BxT)C
|
| 511 |
+
|
| 512 |
+
# FIXME: what happens if padding_count is specified?
|
| 513 |
+
cross_high = tsz * bsz
|
| 514 |
+
high = tsz - (padding_count or 0)
|
| 515 |
+
with torch.no_grad():
|
| 516 |
+
assert high > 1, f"{bsz,tsz,fsz}"
|
| 517 |
+
|
| 518 |
+
if self.n_negatives > 0:
|
| 519 |
+
tszs = (
|
| 520 |
+
buffered_arange(num)
|
| 521 |
+
.unsqueeze(-1)
|
| 522 |
+
.expand(-1, self.n_negatives)
|
| 523 |
+
.flatten()
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
neg_idxs = torch.randint(
|
| 527 |
+
low=0, high=high - 1, size=(bsz, self.n_negatives * num)
|
| 528 |
+
)
|
| 529 |
+
neg_idxs[neg_idxs >= tszs] += 1
|
| 530 |
+
|
| 531 |
+
if self.cross_sample_negatives > 0:
|
| 532 |
+
tszs = (
|
| 533 |
+
buffered_arange(num)
|
| 534 |
+
.unsqueeze(-1)
|
| 535 |
+
.expand(-1, self.cross_sample_negatives)
|
| 536 |
+
.flatten()
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
cross_neg_idxs = torch.randint(
|
| 540 |
+
low=0,
|
| 541 |
+
high=cross_high - 1,
|
| 542 |
+
size=(bsz, self.cross_sample_negatives * num),
|
| 543 |
+
)
|
| 544 |
+
cross_neg_idxs[cross_neg_idxs >= tszs] += 1
|
| 545 |
+
|
| 546 |
+
if self.n_negatives > 0:
|
| 547 |
+
neg_idxs = neg_idxs + (torch.arange(bsz).unsqueeze(1) * high)
|
| 548 |
+
else:
|
| 549 |
+
neg_idxs = cross_neg_idxs
|
| 550 |
+
|
| 551 |
+
if self.cross_sample_negatives > 0 and self.n_negatives > 0:
|
| 552 |
+
neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1)
|
| 553 |
+
|
| 554 |
+
negs = y[neg_idxs.view(-1)]
|
| 555 |
+
negs = negs.view(
|
| 556 |
+
bsz, num, self.n_negatives + self.cross_sample_negatives, fsz
|
| 557 |
+
).permute(
|
| 558 |
+
2, 0, 1, 3
|
| 559 |
+
) # to NxBxTxC
|
| 560 |
+
return negs, neg_idxs
|
| 561 |
+
|
| 562 |
+
def compute_preds(self, x, y, negatives):
|
| 563 |
+
|
| 564 |
+
neg_is_pos = (y == negatives).all(-1)
|
| 565 |
+
y = y.unsqueeze(0)
|
| 566 |
+
targets = torch.cat([y, negatives], dim=0)
|
| 567 |
+
|
| 568 |
+
logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1)
|
| 569 |
+
logits = logits / self.logit_temp
|
| 570 |
+
logits = logits.type_as(x)
|
| 571 |
+
|
| 572 |
+
if is_xla_tensor(logits) or neg_is_pos.any():
|
| 573 |
+
if not hasattr(self, "_inftensor"):
|
| 574 |
+
fillval = -float(2**30)
|
| 575 |
+
self._inftensor = (
|
| 576 |
+
torch.tensor(fillval).to(x.device)
|
| 577 |
+
if is_xla_tensor(logits)
|
| 578 |
+
else float("-inf")
|
| 579 |
+
)
|
| 580 |
+
logits[1:] = index_put(logits[1:], neg_is_pos, self._inftensor)
|
| 581 |
+
|
| 582 |
+
return logits
|
| 583 |
+
|
| 584 |
+
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
|
| 585 |
+
"""
|
| 586 |
+
Computes the output length of the convolutional layers
|
| 587 |
+
"""
|
| 588 |
+
|
| 589 |
+
def _conv_out_length(input_length, kernel_size, stride):
|
| 590 |
+
return torch.floor((input_length - kernel_size) / stride + 1)
|
| 591 |
+
|
| 592 |
+
conv_cfg_list = eval(self.cfg.conv_feature_layers)
|
| 593 |
+
|
| 594 |
+
for i in range(len(conv_cfg_list)):
|
| 595 |
+
input_lengths = _conv_out_length(
|
| 596 |
+
input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2]
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
return input_lengths.to(torch.long)
|
| 600 |
+
|
| 601 |
+
def forward(
|
| 602 |
+
self,
|
| 603 |
+
source,
|
| 604 |
+
padding_mask=None,
|
| 605 |
+
mask=True,
|
| 606 |
+
features_only=False,
|
| 607 |
+
layer=None,
|
| 608 |
+
mask_indices=None,
|
| 609 |
+
mask_channel_indices=None,
|
| 610 |
+
padding_count=None,
|
| 611 |
+
corpus_key=None,
|
| 612 |
+
):
|
| 613 |
+
|
| 614 |
+
if self.feature_grad_mult > 0:
|
| 615 |
+
features = self.feature_extractor(source)
|
| 616 |
+
if self.feature_grad_mult != 1.0:
|
| 617 |
+
features = GradMultiply.apply(features, self.feature_grad_mult)
|
| 618 |
+
else:
|
| 619 |
+
with torch.no_grad():
|
| 620 |
+
features = self.feature_extractor(source)
|
| 621 |
+
|
| 622 |
+
features_pen = features.float().pow(2).mean()
|
| 623 |
+
|
| 624 |
+
features = features.transpose(1, 2)
|
| 625 |
+
features = self.layer_norm(features)
|
| 626 |
+
unmasked_features = features.clone()
|
| 627 |
+
|
| 628 |
+
if padding_mask is not None and padding_mask.any():
|
| 629 |
+
input_lengths = (1 - padding_mask.long()).sum(-1)
|
| 630 |
+
# apply conv formula to get real output_lengths
|
| 631 |
+
output_lengths = self._get_feat_extract_output_lengths(input_lengths)
|
| 632 |
+
|
| 633 |
+
padding_mask = torch.zeros(
|
| 634 |
+
features.shape[:2], dtype=features.dtype, device=features.device
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
# these two operations makes sure that all values
|
| 638 |
+
# before the output lengths indices are attended to
|
| 639 |
+
padding_mask[
|
| 640 |
+
(
|
| 641 |
+
torch.arange(padding_mask.shape[0], device=padding_mask.device),
|
| 642 |
+
output_lengths - 1,
|
| 643 |
+
)
|
| 644 |
+
] = 1
|
| 645 |
+
padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool()
|
| 646 |
+
else:
|
| 647 |
+
padding_mask = None
|
| 648 |
+
|
| 649 |
+
time_steps_to_drop = features.size(1) % self.crop_seq_to_multiple
|
| 650 |
+
if time_steps_to_drop != 0:
|
| 651 |
+
features = features[:, :-time_steps_to_drop]
|
| 652 |
+
unmasked_features = unmasked_features[:, :-time_steps_to_drop]
|
| 653 |
+
if padding_mask is not None:
|
| 654 |
+
padding_mask = padding_mask[:, :-time_steps_to_drop]
|
| 655 |
+
|
| 656 |
+
if self.post_extract_proj is not None:
|
| 657 |
+
features = self.post_extract_proj(features)
|
| 658 |
+
|
| 659 |
+
features = self.dropout_input(features)
|
| 660 |
+
unmasked_features = self.dropout_features(unmasked_features)
|
| 661 |
+
|
| 662 |
+
num_vars = None
|
| 663 |
+
code_ppl = None
|
| 664 |
+
prob_ppl = None
|
| 665 |
+
curr_temp = None
|
| 666 |
+
|
| 667 |
+
if self.input_quantizer:
|
| 668 |
+
q = self.input_quantizer(features, produce_targets=False)
|
| 669 |
+
features = q["x"]
|
| 670 |
+
num_vars = q["num_vars"]
|
| 671 |
+
code_ppl = q["code_perplexity"]
|
| 672 |
+
prob_ppl = q["prob_perplexity"]
|
| 673 |
+
curr_temp = q["temp"]
|
| 674 |
+
features = self.project_inp(features)
|
| 675 |
+
|
| 676 |
+
if mask:
|
| 677 |
+
x, mask_indices = self.apply_mask(
|
| 678 |
+
features,
|
| 679 |
+
padding_mask,
|
| 680 |
+
mask_indices=mask_indices,
|
| 681 |
+
mask_channel_indices=mask_channel_indices,
|
| 682 |
+
)
|
| 683 |
+
if not is_xla_tensor(x) and mask_indices is not None:
|
| 684 |
+
# tpu-comment: reducing the size in a dynamic way causes
|
| 685 |
+
# too many recompilations on xla.
|
| 686 |
+
y = unmasked_features[mask_indices].view(
|
| 687 |
+
unmasked_features.size(0), -1, unmasked_features.size(-1)
|
| 688 |
+
)
|
| 689 |
+
else:
|
| 690 |
+
y = unmasked_features
|
| 691 |
+
else:
|
| 692 |
+
x = features
|
| 693 |
+
y = unmasked_features
|
| 694 |
+
mask_indices = None
|
| 695 |
+
|
| 696 |
+
x, layer_results = self.encoder(
|
| 697 |
+
x, padding_mask=padding_mask, layer=layer, corpus_key=corpus_key
|
| 698 |
+
)
|
| 699 |
+
|
| 700 |
+
if features_only:
|
| 701 |
+
return {
|
| 702 |
+
"x": x,
|
| 703 |
+
"padding_mask": padding_mask,
|
| 704 |
+
"features": unmasked_features,
|
| 705 |
+
"layer_results": layer_results,
|
| 706 |
+
}
|
| 707 |
+
|
| 708 |
+
if self.quantizer:
|
| 709 |
+
if self.negatives_from_everywhere:
|
| 710 |
+
q = self.quantizer(unmasked_features, produce_targets=False)
|
| 711 |
+
y = q["x"]
|
| 712 |
+
num_vars = q["num_vars"]
|
| 713 |
+
code_ppl = q["code_perplexity"]
|
| 714 |
+
prob_ppl = q["prob_perplexity"]
|
| 715 |
+
curr_temp = q["temp"]
|
| 716 |
+
y = self.project_q(y)
|
| 717 |
+
|
| 718 |
+
negs, _ = self.sample_negatives(
|
| 719 |
+
y,
|
| 720 |
+
mask_indices[0].sum(),
|
| 721 |
+
padding_count=padding_count,
|
| 722 |
+
)
|
| 723 |
+
y = y[mask_indices].view(y.size(0), -1, y.size(-1))
|
| 724 |
+
|
| 725 |
+
else:
|
| 726 |
+
q = self.quantizer(y, produce_targets=False)
|
| 727 |
+
y = q["x"]
|
| 728 |
+
num_vars = q["num_vars"]
|
| 729 |
+
code_ppl = q["code_perplexity"]
|
| 730 |
+
prob_ppl = q["prob_perplexity"]
|
| 731 |
+
curr_temp = q["temp"]
|
| 732 |
+
|
| 733 |
+
y = self.project_q(y)
|
| 734 |
+
|
| 735 |
+
negs, _ = self.sample_negatives(
|
| 736 |
+
y,
|
| 737 |
+
y.size(1),
|
| 738 |
+
padding_count=padding_count,
|
| 739 |
+
)
|
| 740 |
+
|
| 741 |
+
if self.codebook_negatives > 0:
|
| 742 |
+
cb_negs = self.quantizer.sample_from_codebook(
|
| 743 |
+
y.size(0) * y.size(1), self.codebook_negatives
|
| 744 |
+
)
|
| 745 |
+
cb_negs = cb_negs.view(
|
| 746 |
+
self.codebook_negatives, y.size(0), y.size(1), -1
|
| 747 |
+
) # order doesnt matter
|
| 748 |
+
cb_negs = self.project_q(cb_negs)
|
| 749 |
+
negs = torch.cat([negs, cb_negs], dim=0)
|
| 750 |
+
else:
|
| 751 |
+
y = self.project_q(y)
|
| 752 |
+
|
| 753 |
+
if self.negatives_from_everywhere:
|
| 754 |
+
negs, _ = self.sample_negatives(
|
| 755 |
+
unmasked_features,
|
| 756 |
+
y.size(1),
|
| 757 |
+
padding_count=padding_count,
|
| 758 |
+
)
|
| 759 |
+
negs = self.project_q(negs)
|
| 760 |
+
else:
|
| 761 |
+
negs, _ = self.sample_negatives(
|
| 762 |
+
y,
|
| 763 |
+
y.size(1),
|
| 764 |
+
padding_count=padding_count,
|
| 765 |
+
)
|
| 766 |
+
|
| 767 |
+
if not is_xla_tensor(x):
|
| 768 |
+
# tpu-comment: reducing the size in a dynamic way causes
|
| 769 |
+
# too many recompilations on xla.
|
| 770 |
+
x = x[mask_indices].view(x.size(0), -1, x.size(-1))
|
| 771 |
+
|
| 772 |
+
if self.target_glu:
|
| 773 |
+
y = self.target_glu(y)
|
| 774 |
+
negs = self.target_glu(negs)
|
| 775 |
+
|
| 776 |
+
x = self.final_proj(x)
|
| 777 |
+
x = self.compute_preds(x, y, negs)
|
| 778 |
+
|
| 779 |
+
result = {
|
| 780 |
+
"x": x,
|
| 781 |
+
"padding_mask": padding_mask,
|
| 782 |
+
"features_pen": features_pen,
|
| 783 |
+
}
|
| 784 |
+
|
| 785 |
+
if prob_ppl is not None:
|
| 786 |
+
result["prob_perplexity"] = prob_ppl
|
| 787 |
+
result["code_perplexity"] = code_ppl
|
| 788 |
+
result["num_vars"] = num_vars
|
| 789 |
+
result["temp"] = curr_temp
|
| 790 |
+
|
| 791 |
+
return result
|
| 792 |
+
|
| 793 |
+
def quantize(self, x):
|
| 794 |
+
assert self.quantizer is not None
|
| 795 |
+
x = self.feature_extractor(x)
|
| 796 |
+
x = x.transpose(1, 2)
|
| 797 |
+
x = self.layer_norm(x)
|
| 798 |
+
return self.quantizer.forward_idx(x)
|
| 799 |
+
|
| 800 |
+
def extract_features(
|
| 801 |
+
self, source, padding_mask, mask=False, layer=None, corpus_key=None
|
| 802 |
+
):
|
| 803 |
+
res = self.forward(
|
| 804 |
+
source,
|
| 805 |
+
padding_mask,
|
| 806 |
+
mask=mask,
|
| 807 |
+
features_only=True,
|
| 808 |
+
layer=layer,
|
| 809 |
+
corpus_key=corpus_key,
|
| 810 |
+
)
|
| 811 |
+
return res
|
| 812 |
+
|
| 813 |
+
def get_logits(self, net_output):
|
| 814 |
+
logits = net_output["x"]
|
| 815 |
+
logits = logits.transpose(0, 2)
|
| 816 |
+
logits = logits.reshape(-1, logits.size(-1))
|
| 817 |
+
return logits
|
| 818 |
+
|
| 819 |
+
def get_targets(self, sample, net_output, expand_steps=True):
|
| 820 |
+
x = net_output["x"]
|
| 821 |
+
return x.new_zeros(x.size(1) * x.size(2), dtype=torch.long)
|
| 822 |
+
|
| 823 |
+
def get_extra_losses(self, net_output):
|
| 824 |
+
pen = []
|
| 825 |
+
|
| 826 |
+
if "prob_perplexity" in net_output:
|
| 827 |
+
pen.append(
|
| 828 |
+
(net_output["num_vars"] - net_output["prob_perplexity"])
|
| 829 |
+
/ net_output["num_vars"]
|
| 830 |
+
)
|
| 831 |
+
|
| 832 |
+
if "features_pen" in net_output:
|
| 833 |
+
pen.append(net_output["features_pen"])
|
| 834 |
+
|
| 835 |
+
return pen
|
| 836 |
+
|
| 837 |
+
def remove_pretraining_modules(self, last_layer=None):
|
| 838 |
+
self.quantizer = None
|
| 839 |
+
self.project_q = None
|
| 840 |
+
self.target_glu = None
|
| 841 |
+
self.final_proj = None
|
| 842 |
+
|
| 843 |
+
if last_layer is not None:
|
| 844 |
+
self.encoder.layers = nn.ModuleList(
|
| 845 |
+
l for i, l in enumerate(self.encoder.layers) if i <= last_layer
|
| 846 |
+
)
|
| 847 |
+
|
| 848 |
+
|
| 849 |
+
class ConvFeatureExtractionModel(nn.Module):
|
| 850 |
+
def __init__(
|
| 851 |
+
self,
|
| 852 |
+
conv_layers: List[Tuple[int, int, int]],
|
| 853 |
+
dropout: float = 0.0,
|
| 854 |
+
mode: str = "default",
|
| 855 |
+
conv_bias: bool = False,
|
| 856 |
+
input_feature_ndim: int = 40
|
| 857 |
+
):
|
| 858 |
+
super().__init__()
|
| 859 |
+
|
| 860 |
+
assert mode in {"default", "layer_norm"}
|
| 861 |
+
|
| 862 |
+
def block(
|
| 863 |
+
n_in,
|
| 864 |
+
n_out,
|
| 865 |
+
k,
|
| 866 |
+
stride,
|
| 867 |
+
is_layer_norm=False,
|
| 868 |
+
is_group_norm=False,
|
| 869 |
+
conv_bias=False,
|
| 870 |
+
):
|
| 871 |
+
def make_conv():
|
| 872 |
+
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
|
| 873 |
+
nn.init.kaiming_normal_(conv.weight)
|
| 874 |
+
return conv
|
| 875 |
+
|
| 876 |
+
assert (
|
| 877 |
+
is_layer_norm and is_group_norm
|
| 878 |
+
) == False, "layer norm and group norm are exclusive"
|
| 879 |
+
|
| 880 |
+
if is_layer_norm:
|
| 881 |
+
return nn.Sequential(
|
| 882 |
+
make_conv(),
|
| 883 |
+
nn.Dropout(p=dropout),
|
| 884 |
+
nn.Sequential(
|
| 885 |
+
TransposeLast(),
|
| 886 |
+
Fp32LayerNorm(dim, elementwise_affine=True),
|
| 887 |
+
TransposeLast(),
|
| 888 |
+
),
|
| 889 |
+
nn.GELU(),
|
| 890 |
+
)
|
| 891 |
+
elif is_group_norm:
|
| 892 |
+
return nn.Sequential(
|
| 893 |
+
make_conv(),
|
| 894 |
+
nn.Dropout(p=dropout),
|
| 895 |
+
Fp32GroupNorm(dim, dim, affine=True),
|
| 896 |
+
nn.GELU(),
|
| 897 |
+
)
|
| 898 |
+
else:
|
| 899 |
+
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
|
| 900 |
+
|
| 901 |
+
in_d = input_feature_ndim
|
| 902 |
+
self.conv_layers = nn.ModuleList()
|
| 903 |
+
for i, cl in enumerate(conv_layers):
|
| 904 |
+
assert len(cl) == 3, "invalid conv definition: " + str(cl)
|
| 905 |
+
(dim, k, stride) = cl
|
| 906 |
+
|
| 907 |
+
self.conv_layers.append(
|
| 908 |
+
block(
|
| 909 |
+
in_d,
|
| 910 |
+
dim,
|
| 911 |
+
k,
|
| 912 |
+
stride,
|
| 913 |
+
is_layer_norm=mode == "layer_norm",
|
| 914 |
+
is_group_norm=mode == "default" and i == 0,
|
| 915 |
+
conv_bias=conv_bias,
|
| 916 |
+
)
|
| 917 |
+
)
|
| 918 |
+
in_d = dim
|
| 919 |
+
|
| 920 |
+
def forward(self, x):
|
| 921 |
+
|
| 922 |
+
# BxTxC -> BxCxT
|
| 923 |
+
#x = x.unsqueeze(1)
|
| 924 |
+
x = x.permute([0,2,1])
|
| 925 |
+
|
| 926 |
+
for conv in self.conv_layers:
|
| 927 |
+
x = conv(x)
|
| 928 |
+
|
| 929 |
+
return x
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
def make_conv_pos(e, k, g, is_batch_norm=False):
|
| 933 |
+
pos_conv = nn.Conv1d(
|
| 934 |
+
e,
|
| 935 |
+
e,
|
| 936 |
+
kernel_size=k,
|
| 937 |
+
padding=k // 2,
|
| 938 |
+
groups=g,
|
| 939 |
+
)
|
| 940 |
+
dropout = 0
|
| 941 |
+
std = math.sqrt((4 * (1.0 - dropout)) / (k * e))
|
| 942 |
+
nn.init.normal_(pos_conv.weight, mean=0, std=std)
|
| 943 |
+
nn.init.constant_(pos_conv.bias, 0)
|
| 944 |
+
|
| 945 |
+
if not is_batch_norm:
|
| 946 |
+
pos_conv = nn.utils.weight_norm(pos_conv, name="weight", dim=2)
|
| 947 |
+
pos_conv = nn.Sequential(pos_conv, SamePad(k), nn.GELU())
|
| 948 |
+
else:
|
| 949 |
+
batch_norm = nn.BatchNorm1d(e)
|
| 950 |
+
pos_conv = nn.Sequential(batch_norm, pos_conv, SamePad(k), nn.GELU())
|
| 951 |
+
|
| 952 |
+
return pos_conv
|
| 953 |
+
|
| 954 |
+
|
| 955 |
+
class TransformerEncoder(nn.Module):
|
| 956 |
+
def build_encoder_layer(self, args: Wav2Vec2Config, **kwargs):
|
| 957 |
+
if args.layer_type == "transformer":
|
| 958 |
+
layer = TransformerSentenceEncoderLayer(
|
| 959 |
+
embedding_dim=self.embedding_dim,
|
| 960 |
+
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
| 961 |
+
num_attention_heads=args.encoder_attention_heads,
|
| 962 |
+
dropout=self.dropout,
|
| 963 |
+
attention_dropout=args.attention_dropout,
|
| 964 |
+
activation_dropout=args.activation_dropout,
|
| 965 |
+
activation_fn=args.activation_fn,
|
| 966 |
+
layer_norm_first=args.layer_norm_first,
|
| 967 |
+
)
|
| 968 |
+
elif args.layer_type == "conformer":
|
| 969 |
+
layer = ConformerWav2Vec2EncoderLayer(
|
| 970 |
+
embed_dim=self.embedding_dim,
|
| 971 |
+
ffn_embed_dim=args.encoder_ffn_embed_dim,
|
| 972 |
+
attention_heads=args.encoder_attention_heads,
|
| 973 |
+
dropout=args.dropout,
|
| 974 |
+
depthwise_conv_kernel_size=args.depthwise_conv_kernel_size,
|
| 975 |
+
activation_fn="swish",
|
| 976 |
+
attn_type=args.attn_type,
|
| 977 |
+
use_fp16=args.fp16,
|
| 978 |
+
pos_enc_type="abs",
|
| 979 |
+
)
|
| 980 |
+
elif args.layer_type == "trf_adp":
|
| 981 |
+
use_adp = False
|
| 982 |
+
if args.adp_trf_idx == "all":
|
| 983 |
+
use_adp = True
|
| 984 |
+
else:
|
| 985 |
+
adp_trf_idx = list(range(*[int(g) for g in args.adp_trf_idx.split(":")]))
|
| 986 |
+
if kwargs.get("layer_idx", None) in adp_trf_idx:
|
| 987 |
+
use_adp = True
|
| 988 |
+
if use_adp:
|
| 989 |
+
layer = TransformerSentenceEncoderWithAdapterLayer(
|
| 990 |
+
embedding_dim=self.embedding_dim,
|
| 991 |
+
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
| 992 |
+
num_attention_heads=args.encoder_attention_heads,
|
| 993 |
+
dropout=self.dropout,
|
| 994 |
+
attention_dropout=args.attention_dropout,
|
| 995 |
+
activation_dropout=args.activation_dropout,
|
| 996 |
+
activation_fn=args.activation_fn,
|
| 997 |
+
layer_norm_first=args.layer_norm_first,
|
| 998 |
+
adapter_num=args.adp_num,
|
| 999 |
+
adapter_dim=args.adp_dim,
|
| 1000 |
+
adapter_act_fn=args.adp_act_fn,
|
| 1001 |
+
)
|
| 1002 |
+
else:
|
| 1003 |
+
layer = TransformerSentenceEncoderLayer(
|
| 1004 |
+
embedding_dim=self.embedding_dim,
|
| 1005 |
+
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
| 1006 |
+
num_attention_heads=args.encoder_attention_heads,
|
| 1007 |
+
dropout=self.dropout,
|
| 1008 |
+
attention_dropout=args.attention_dropout,
|
| 1009 |
+
activation_dropout=args.activation_dropout,
|
| 1010 |
+
activation_fn=args.activation_fn,
|
| 1011 |
+
layer_norm_first=args.layer_norm_first,
|
| 1012 |
+
)
|
| 1013 |
+
|
| 1014 |
+
layer = fsdp_wrap(layer)
|
| 1015 |
+
if args.checkpoint_activations:
|
| 1016 |
+
layer = checkpoint_wrapper(layer)
|
| 1017 |
+
return layer
|
| 1018 |
+
|
| 1019 |
+
def __init__(self, args: Wav2Vec2Config):
|
| 1020 |
+
super().__init__()
|
| 1021 |
+
|
| 1022 |
+
self.dropout = args.dropout
|
| 1023 |
+
self.embedding_dim = args.encoder_embed_dim
|
| 1024 |
+
self.required_seq_len_multiple = args.required_seq_len_multiple
|
| 1025 |
+
|
| 1026 |
+
pos_conv_depth = getattr(args, "pos_conv_depth", 1)
|
| 1027 |
+
if pos_conv_depth > 1:
|
| 1028 |
+
num_layers = args.pos_conv_depth
|
| 1029 |
+
k = max(3, args.conv_pos // num_layers)
|
| 1030 |
+
|
| 1031 |
+
def make_conv_block(e, k, g, l):
|
| 1032 |
+
return nn.Sequential(
|
| 1033 |
+
*[
|
| 1034 |
+
nn.Sequential(
|
| 1035 |
+
nn.Conv1d(
|
| 1036 |
+
e,
|
| 1037 |
+
e,
|
| 1038 |
+
kernel_size=k,
|
| 1039 |
+
padding=k // 2,
|
| 1040 |
+
groups=g,
|
| 1041 |
+
),
|
| 1042 |
+
SamePad(k),
|
| 1043 |
+
TransposeLast(),
|
| 1044 |
+
LayerNorm(e, elementwise_affine=False),
|
| 1045 |
+
TransposeLast(),
|
| 1046 |
+
nn.GELU(),
|
| 1047 |
+
)
|
| 1048 |
+
for _ in range(l)
|
| 1049 |
+
]
|
| 1050 |
+
)
|
| 1051 |
+
|
| 1052 |
+
self.pos_conv = make_conv_block(
|
| 1053 |
+
self.embedding_dim, k, args.conv_pos_groups, num_layers
|
| 1054 |
+
)
|
| 1055 |
+
|
| 1056 |
+
else:
|
| 1057 |
+
self.pos_conv = make_conv_pos(
|
| 1058 |
+
self.embedding_dim,
|
| 1059 |
+
args.conv_pos,
|
| 1060 |
+
args.conv_pos_groups,
|
| 1061 |
+
is_batch_norm=args.conv_pos_batch_norm
|
| 1062 |
+
if hasattr(args, "conv_pos_batch_norm")
|
| 1063 |
+
else False,
|
| 1064 |
+
)
|
| 1065 |
+
|
| 1066 |
+
self.layers = nn.ModuleList(
|
| 1067 |
+
[self.build_encoder_layer(args, layer_idx=ii) for ii in range(args.encoder_layers)]
|
| 1068 |
+
)
|
| 1069 |
+
self.layer_norm_first = args.layer_norm_first
|
| 1070 |
+
self.layer_norm = LayerNorm(self.embedding_dim)
|
| 1071 |
+
self.layerdrop = args.encoder_layerdrop
|
| 1072 |
+
|
| 1073 |
+
self.apply(init_bert_params)
|
| 1074 |
+
|
| 1075 |
+
def forward(self, x, padding_mask=None, layer=None, corpus_key=None):
|
| 1076 |
+
x, layer_results = self.extract_features(
|
| 1077 |
+
x, padding_mask, layer, corpus_key=corpus_key
|
| 1078 |
+
)
|
| 1079 |
+
|
| 1080 |
+
if self.layer_norm_first and layer is None:
|
| 1081 |
+
x = self.layer_norm(x)
|
| 1082 |
+
|
| 1083 |
+
return x, layer_results
|
| 1084 |
+
|
| 1085 |
+
def extract_features(
|
| 1086 |
+
self,
|
| 1087 |
+
x,
|
| 1088 |
+
padding_mask=None,
|
| 1089 |
+
tgt_layer=None,
|
| 1090 |
+
min_layer=0,
|
| 1091 |
+
corpus_key=None,
|
| 1092 |
+
):
|
| 1093 |
+
|
| 1094 |
+
if padding_mask is not None:
|
| 1095 |
+
x = index_put(x, padding_mask, 0)
|
| 1096 |
+
|
| 1097 |
+
x_conv = self.pos_conv(x.transpose(1, 2))
|
| 1098 |
+
x_conv = x_conv.transpose(1, 2)
|
| 1099 |
+
x = x + x_conv
|
| 1100 |
+
|
| 1101 |
+
if not self.layer_norm_first:
|
| 1102 |
+
x = self.layer_norm(x)
|
| 1103 |
+
|
| 1104 |
+
# pad to the sequence length dimension
|
| 1105 |
+
x, pad_length = pad_to_multiple(
|
| 1106 |
+
x, self.required_seq_len_multiple, dim=-2, value=0
|
| 1107 |
+
)
|
| 1108 |
+
if pad_length > 0 and padding_mask is None:
|
| 1109 |
+
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
|
| 1110 |
+
padding_mask[:, -pad_length:] = True
|
| 1111 |
+
else:
|
| 1112 |
+
padding_mask, _ = pad_to_multiple(
|
| 1113 |
+
padding_mask, self.required_seq_len_multiple, dim=-1, value=True
|
| 1114 |
+
)
|
| 1115 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
| 1116 |
+
|
| 1117 |
+
# B x T x C -> T x B x C
|
| 1118 |
+
x = x.transpose(0, 1)
|
| 1119 |
+
|
| 1120 |
+
layer_results = []
|
| 1121 |
+
r = None
|
| 1122 |
+
|
| 1123 |
+
for i, layer in enumerate(self.layers):
|
| 1124 |
+
dropout_probability = np.random.random() if self.layerdrop > 0 else 1
|
| 1125 |
+
if not self.training or (dropout_probability > self.layerdrop):
|
| 1126 |
+
layer_check = layer
|
| 1127 |
+
if isinstance(layer, FullyShardedDataParallel):
|
| 1128 |
+
layer_check = layer.unwrapped_module
|
| 1129 |
+
if (corpus_key is None) or (
|
| 1130 |
+
not isinstance(layer_check, (
|
| 1131 |
+
TransformerSentenceEncoderWithAdapterLayer,
|
| 1132 |
+
)
|
| 1133 |
+
)
|
| 1134 |
+
):
|
| 1135 |
+
x, (z, lr) = layer(
|
| 1136 |
+
x, self_attn_padding_mask=padding_mask, need_weights=False
|
| 1137 |
+
)
|
| 1138 |
+
else:
|
| 1139 |
+
x, (z, lr) = layer(
|
| 1140 |
+
x,
|
| 1141 |
+
self_attn_padding_mask=padding_mask,
|
| 1142 |
+
need_weights=False,
|
| 1143 |
+
corpus_key=corpus_key,
|
| 1144 |
+
)
|
| 1145 |
+
if i >= min_layer:
|
| 1146 |
+
layer_results.append((x, z, lr))
|
| 1147 |
+
if i == tgt_layer:
|
| 1148 |
+
r = x
|
| 1149 |
+
break
|
| 1150 |
+
|
| 1151 |
+
if r is not None:
|
| 1152 |
+
x = r
|
| 1153 |
+
|
| 1154 |
+
# T x B x C -> B x T x C
|
| 1155 |
+
x = x.transpose(0, 1)
|
| 1156 |
+
|
| 1157 |
+
# undo paddding
|
| 1158 |
+
if pad_length > 0:
|
| 1159 |
+
x = x[:, :-pad_length]
|
| 1160 |
+
|
| 1161 |
+
def undo_pad(a, b, c):
|
| 1162 |
+
return (
|
| 1163 |
+
a[:-pad_length],
|
| 1164 |
+
b[:-pad_length] if b is not None else b,
|
| 1165 |
+
c[:-pad_length],
|
| 1166 |
+
)
|
| 1167 |
+
|
| 1168 |
+
layer_results = [undo_pad(*u) for u in layer_results]
|
| 1169 |
+
|
| 1170 |
+
return x, layer_results
|
| 1171 |
+
|
| 1172 |
+
def max_positions(self):
|
| 1173 |
+
"""Maximum output length supported by the encoder."""
|
| 1174 |
+
return self.args.max_positions
|
| 1175 |
+
|
| 1176 |
+
def upgrade_state_dict_named(self, state_dict, name):
|
| 1177 |
+
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
|
| 1178 |
+
return state_dict
|
| 1179 |
+
|
| 1180 |
+
|
| 1181 |
+
class ConformerEncoder(TransformerEncoder):
|
| 1182 |
+
def build_encoder_layer(self, args):
|
| 1183 |
+
layer = ConformerWav2Vec2EncoderLayer(
|
| 1184 |
+
embed_dim=self.embedding_dim,
|
| 1185 |
+
ffn_embed_dim=args.encoder_ffn_embed_dim,
|
| 1186 |
+
attention_heads=args.encoder_attention_heads,
|
| 1187 |
+
dropout=args.dropout,
|
| 1188 |
+
depthwise_conv_kernel_size=args.depthwise_conv_kernel_size,
|
| 1189 |
+
activation_fn="swish",
|
| 1190 |
+
attn_type=args.attn_type,
|
| 1191 |
+
pos_enc_type=args.pos_enc_type,
|
| 1192 |
+
use_fp16=args.fp16, # only used for rope
|
| 1193 |
+
)
|
| 1194 |
+
layer = fsdp_wrap(layer)
|
| 1195 |
+
if args.checkpoint_activations:
|
| 1196 |
+
layer = checkpoint_wrapper(layer)
|
| 1197 |
+
return layer
|
| 1198 |
+
|
| 1199 |
+
def __init__(self, args):
|
| 1200 |
+
super().__init__(args)
|
| 1201 |
+
self.args = args
|
| 1202 |
+
self.dropout = args.dropout
|
| 1203 |
+
self.embedding_dim = args.encoder_embed_dim
|
| 1204 |
+
self.pos_enc_type = args.pos_enc_type
|
| 1205 |
+
max_source_positions = self.max_positions()
|
| 1206 |
+
|
| 1207 |
+
if self.pos_enc_type == "rel_pos":
|
| 1208 |
+
self.embed_positions = RelPositionalEncoding(
|
| 1209 |
+
max_source_positions, self.embedding_dim
|
| 1210 |
+
)
|
| 1211 |
+
elif self.pos_enc_type == "rope":
|
| 1212 |
+
self.embed_positions = None
|
| 1213 |
+
else:
|
| 1214 |
+
raise Exception("Unsupported positional encoding type")
|
| 1215 |
+
|
| 1216 |
+
self.layers = nn.ModuleList(
|
| 1217 |
+
[self.build_encoder_layer(args) for _ in range(args.encoder_layers)]
|
| 1218 |
+
)
|
| 1219 |
+
self.layer_norm_first = args.layer_norm_first
|
| 1220 |
+
self.layer_norm = LayerNorm(self.embedding_dim)
|
| 1221 |
+
self.layerdrop = args.encoder_layerdrop
|
| 1222 |
+
|
| 1223 |
+
self.apply(init_bert_params)
|
| 1224 |
+
|
| 1225 |
+
def extract_features(self, x, padding_mask=None, tgt_layer=None):
|
| 1226 |
+
if padding_mask is not None:
|
| 1227 |
+
x = index_put(x, padding_mask, 0)
|
| 1228 |
+
|
| 1229 |
+
# B x T x C -> T x B x C
|
| 1230 |
+
x = x.transpose(0, 1)
|
| 1231 |
+
|
| 1232 |
+
# B X T X C here
|
| 1233 |
+
position_emb = None
|
| 1234 |
+
if self.pos_enc_type == "rel_pos":
|
| 1235 |
+
position_emb = self.embed_positions(x)
|
| 1236 |
+
|
| 1237 |
+
if not self.layer_norm_first:
|
| 1238 |
+
x = self.layer_norm(x)
|
| 1239 |
+
|
| 1240 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
| 1241 |
+
|
| 1242 |
+
layer_results = []
|
| 1243 |
+
r = None
|
| 1244 |
+
for i, layer in enumerate(self.layers):
|
| 1245 |
+
dropout_probability = np.random.random()
|
| 1246 |
+
if not self.training or (dropout_probability > self.layerdrop):
|
| 1247 |
+
x, z = layer(
|
| 1248 |
+
x,
|
| 1249 |
+
self_attn_padding_mask=padding_mask,
|
| 1250 |
+
need_weights=False,
|
| 1251 |
+
position_emb=position_emb,
|
| 1252 |
+
)
|
| 1253 |
+
if tgt_layer is not None:
|
| 1254 |
+
layer_results.append((x, z))
|
| 1255 |
+
if i == tgt_layer:
|
| 1256 |
+
r = x
|
| 1257 |
+
break
|
| 1258 |
+
|
| 1259 |
+
if r is not None:
|
| 1260 |
+
x = r
|
| 1261 |
+
|
| 1262 |
+
# T x B x C -> B x T x C
|
| 1263 |
+
x = x.transpose(0, 1)
|
| 1264 |
+
|
| 1265 |
+
return x, layer_results
|
| 1266 |
+
|
| 1267 |
+
|
| 1268 |
+
class TransformerSentenceEncoderLayer(nn.Module):
|
| 1269 |
+
"""
|
| 1270 |
+
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
|
| 1271 |
+
models.
|
| 1272 |
+
"""
|
| 1273 |
+
|
| 1274 |
+
def __init__(
|
| 1275 |
+
self,
|
| 1276 |
+
embedding_dim: float = 768,
|
| 1277 |
+
ffn_embedding_dim: float = 3072,
|
| 1278 |
+
num_attention_heads: int = 8,
|
| 1279 |
+
dropout: float = 0.1,
|
| 1280 |
+
attention_dropout: float = 0.1,
|
| 1281 |
+
activation_dropout: float = 0.1,
|
| 1282 |
+
activation_fn: str = "relu",
|
| 1283 |
+
layer_norm_first: bool = False,
|
| 1284 |
+
) -> None:
|
| 1285 |
+
|
| 1286 |
+
super().__init__()
|
| 1287 |
+
# Initialize parameters
|
| 1288 |
+
self.embedding_dim = embedding_dim
|
| 1289 |
+
self.dropout = dropout
|
| 1290 |
+
self.activation_dropout = activation_dropout
|
| 1291 |
+
|
| 1292 |
+
# Initialize blocks
|
| 1293 |
+
self.activation_fn = utils.get_activation_fn(activation_fn)
|
| 1294 |
+
self.self_attn = MultiheadAttention(
|
| 1295 |
+
self.embedding_dim,
|
| 1296 |
+
num_attention_heads,
|
| 1297 |
+
dropout=attention_dropout,
|
| 1298 |
+
self_attention=True,
|
| 1299 |
+
)
|
| 1300 |
+
|
| 1301 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 1302 |
+
self.dropout2 = nn.Dropout(self.activation_dropout)
|
| 1303 |
+
self.dropout3 = nn.Dropout(dropout)
|
| 1304 |
+
|
| 1305 |
+
self.layer_norm_first = layer_norm_first
|
| 1306 |
+
|
| 1307 |
+
# layer norm associated with the self attention layer
|
| 1308 |
+
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
|
| 1309 |
+
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
|
| 1310 |
+
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
|
| 1311 |
+
|
| 1312 |
+
# layer norm associated with the position wise feed-forward NN
|
| 1313 |
+
self.final_layer_norm = LayerNorm(self.embedding_dim)
|
| 1314 |
+
|
| 1315 |
+
def forward(
|
| 1316 |
+
self,
|
| 1317 |
+
x: torch.Tensor,
|
| 1318 |
+
self_attn_mask: torch.Tensor = None,
|
| 1319 |
+
self_attn_padding_mask: torch.Tensor = None,
|
| 1320 |
+
need_weights: bool = False,
|
| 1321 |
+
att_args=None,
|
| 1322 |
+
):
|
| 1323 |
+
"""
|
| 1324 |
+
LayerNorm is applied either before or after the self-attention/ffn
|
| 1325 |
+
modules similar to the original Transformer imlementation.
|
| 1326 |
+
"""
|
| 1327 |
+
residual = x
|
| 1328 |
+
|
| 1329 |
+
if self.layer_norm_first:
|
| 1330 |
+
x = self.self_attn_layer_norm(x)
|
| 1331 |
+
x, attn = self.self_attn(
|
| 1332 |
+
query=x,
|
| 1333 |
+
key=x,
|
| 1334 |
+
value=x,
|
| 1335 |
+
key_padding_mask=self_attn_padding_mask,
|
| 1336 |
+
attn_mask=self_attn_mask,
|
| 1337 |
+
need_weights=False,
|
| 1338 |
+
)
|
| 1339 |
+
x = self.dropout1(x)
|
| 1340 |
+
x = residual + x
|
| 1341 |
+
|
| 1342 |
+
residual = x
|
| 1343 |
+
x = self.final_layer_norm(x)
|
| 1344 |
+
x = self.activation_fn(self.fc1(x))
|
| 1345 |
+
x = self.dropout2(x)
|
| 1346 |
+
x = self.fc2(x)
|
| 1347 |
+
|
| 1348 |
+
layer_result = x
|
| 1349 |
+
|
| 1350 |
+
x = self.dropout3(x)
|
| 1351 |
+
x = residual + x
|
| 1352 |
+
else:
|
| 1353 |
+
x, attn = self.self_attn(
|
| 1354 |
+
query=x,
|
| 1355 |
+
key=x,
|
| 1356 |
+
value=x,
|
| 1357 |
+
key_padding_mask=self_attn_padding_mask,
|
| 1358 |
+
need_weights=False,
|
| 1359 |
+
)
|
| 1360 |
+
|
| 1361 |
+
x = self.dropout1(x)
|
| 1362 |
+
x = residual + x
|
| 1363 |
+
|
| 1364 |
+
x = self.self_attn_layer_norm(x)
|
| 1365 |
+
|
| 1366 |
+
residual = x
|
| 1367 |
+
x = self.activation_fn(self.fc1(x))
|
| 1368 |
+
x = self.dropout2(x)
|
| 1369 |
+
x = self.fc2(x)
|
| 1370 |
+
|
| 1371 |
+
layer_result = x
|
| 1372 |
+
|
| 1373 |
+
x = self.dropout3(x)
|
| 1374 |
+
x = residual + x
|
| 1375 |
+
x = self.final_layer_norm(x)
|
| 1376 |
+
|
| 1377 |
+
return x, (attn, layer_result)
|
| 1378 |
+
|
| 1379 |
+
|
| 1380 |
+
class AdapterFast(nn.Module):
|
| 1381 |
+
def __init__(self, adapter_num, input_dim, hidden_dim, act_fn):
|
| 1382 |
+
"""
|
| 1383 |
+
Implements adapter modules directly with 3D tensor weight as parameters
|
| 1384 |
+
and without using ModuleList orto speed up training throughput.
|
| 1385 |
+
"""
|
| 1386 |
+
super().__init__()
|
| 1387 |
+
|
| 1388 |
+
self.adapter_num = adapter_num
|
| 1389 |
+
self.input_dim = input_dim
|
| 1390 |
+
self.hidden_dim = hidden_dim
|
| 1391 |
+
self.W_a = nn.Parameter(torch.empty(adapter_num, hidden_dim, input_dim))
|
| 1392 |
+
self.W_b = nn.Parameter(torch.empty(adapter_num, input_dim, hidden_dim))
|
| 1393 |
+
self.b_a = nn.Parameter(torch.empty(adapter_num, hidden_dim))
|
| 1394 |
+
self.b_b = nn.Parameter(torch.empty(adapter_num, input_dim))
|
| 1395 |
+
|
| 1396 |
+
self.ln_W = nn.Parameter(torch.empty(adapter_num, input_dim))
|
| 1397 |
+
self.ln_b = nn.Parameter(torch.empty(adapter_num, input_dim))
|
| 1398 |
+
self.act_fn = nn.Identity()
|
| 1399 |
+
if act_fn == "relu":
|
| 1400 |
+
self.act_fn = nn.ReLU()
|
| 1401 |
+
elif act_fn == "gelu":
|
| 1402 |
+
self.act_fn = nn.GELU()
|
| 1403 |
+
elif act_fn == "selu":
|
| 1404 |
+
self.act_fn = nn.SELU()
|
| 1405 |
+
else:
|
| 1406 |
+
raise ValueError(f"unsupported {act_fn}")
|
| 1407 |
+
|
| 1408 |
+
|
| 1409 |
+
self.input_dim = input_dim
|
| 1410 |
+
self.reset_parameters()
|
| 1411 |
+
|
| 1412 |
+
def reset_parameters(self):
|
| 1413 |
+
for ii in range(self.adapter_num):
|
| 1414 |
+
nn.init.kaiming_uniform_(self.W_a[ii], a=math.sqrt(5))
|
| 1415 |
+
nn.init.kaiming_uniform_(self.W_b[ii], a=math.sqrt(5))
|
| 1416 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_a[ii])
|
| 1417 |
+
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
|
| 1418 |
+
nn.init.uniform_(self.b_a[ii], -bound, bound)
|
| 1419 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_b[ii])
|
| 1420 |
+
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
|
| 1421 |
+
nn.init.uniform_(self.b_b[ii], -bound, bound)
|
| 1422 |
+
|
| 1423 |
+
nn.init.ones_(self.ln_W)
|
| 1424 |
+
nn.init.zeros_(self.ln_b)
|
| 1425 |
+
|
| 1426 |
+
def forward(self, x, adapter_id):
|
| 1427 |
+
ii = adapter_id
|
| 1428 |
+
h = x
|
| 1429 |
+
h = F.layer_norm(h, (self.input_dim, ), self.ln_W[ii], self.ln_b[ii])
|
| 1430 |
+
h = F.linear(h, self.W_a[ii], self.b_a[ii])
|
| 1431 |
+
h = self.act_fn(h)
|
| 1432 |
+
h = F.linear(h, self.W_b[ii], self.b_b[ii])
|
| 1433 |
+
outputs = h
|
| 1434 |
+
return outputs
|
| 1435 |
+
|
| 1436 |
+
def extra_repr(self):
|
| 1437 |
+
return ('adapter={}, input_dim={}, hidden_dim={}'.format(self.adapter_num, self.input_dim, self.hidden_dim))
|
| 1438 |
+
|
| 1439 |
+
|
| 1440 |
+
|
| 1441 |
+
class TransformerSentenceEncoderWithAdapterLayer(TransformerSentenceEncoderLayer):
|
| 1442 |
+
"""
|
| 1443 |
+
Implements a Transformer Encoder Layer with adapters used in BERT/XLM style pre-trained
|
| 1444 |
+
models. An adapter module is added along with vanilla Transformer module.
|
| 1445 |
+
"""
|
| 1446 |
+
|
| 1447 |
+
def __init__(
|
| 1448 |
+
self,
|
| 1449 |
+
embedding_dim: float = 768,
|
| 1450 |
+
ffn_embedding_dim: float = 3072,
|
| 1451 |
+
num_attention_heads: int = 8,
|
| 1452 |
+
dropout: float = 0.1,
|
| 1453 |
+
attention_dropout: float = 0.1,
|
| 1454 |
+
activation_dropout: float = 0.1,
|
| 1455 |
+
activation_fn: str = "relu",
|
| 1456 |
+
layer_norm_first: bool = False,
|
| 1457 |
+
adapter_num=201,
|
| 1458 |
+
adapter_dim=64,
|
| 1459 |
+
adapter_act_fn="relu",
|
| 1460 |
+
) -> None:
|
| 1461 |
+
|
| 1462 |
+
super().__init__(
|
| 1463 |
+
embedding_dim=embedding_dim,
|
| 1464 |
+
ffn_embedding_dim=ffn_embedding_dim,
|
| 1465 |
+
num_attention_heads=num_attention_heads,
|
| 1466 |
+
dropout=dropout,
|
| 1467 |
+
attention_dropout=attention_dropout,
|
| 1468 |
+
activation_dropout=activation_dropout,
|
| 1469 |
+
activation_fn=activation_fn,
|
| 1470 |
+
layer_norm_first=layer_norm_first,
|
| 1471 |
+
|
| 1472 |
+
)
|
| 1473 |
+
|
| 1474 |
+
self.adapter_num = adapter_num
|
| 1475 |
+
self.adapter_dim = adapter_dim
|
| 1476 |
+
self.adapter_layer = AdapterFast(adapter_num, self.embedding_dim, self.adapter_dim, adapter_act_fn)
|
| 1477 |
+
|
| 1478 |
+
def forward(
|
| 1479 |
+
self,
|
| 1480 |
+
x: torch.Tensor,
|
| 1481 |
+
self_attn_mask: torch.Tensor = None,
|
| 1482 |
+
self_attn_padding_mask: torch.Tensor = None,
|
| 1483 |
+
need_weights: bool = False,
|
| 1484 |
+
att_args=None,
|
| 1485 |
+
corpus_key=None,
|
| 1486 |
+
):
|
| 1487 |
+
|
| 1488 |
+
x, (attn, layer_result) = super().forward(
|
| 1489 |
+
x=x,
|
| 1490 |
+
self_attn_mask=self_attn_mask,
|
| 1491 |
+
self_attn_padding_mask=self_attn_padding_mask,
|
| 1492 |
+
need_weights=need_weights,
|
| 1493 |
+
att_args=att_args,
|
| 1494 |
+
)
|
| 1495 |
+
assert corpus_key is not None
|
| 1496 |
+
assert len(set(corpus_key)) == 1, f"corpus_key items are not same {corpus_key}"
|
| 1497 |
+
y = self.adapter_layer(x, corpus_key[0])
|
| 1498 |
+
x = x + y
|
| 1499 |
+
return x, (attn, layer_result)
|