Update app.py
Browse files
app.py
CHANGED
|
@@ -1,206 +1,313 @@
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
-
from pydantic import BaseModel
|
| 4 |
import pymongo
|
| 5 |
import os
|
| 6 |
import numpy as np
|
| 7 |
from datetime import datetime, timedelta
|
| 8 |
import logging
|
|
|
|
| 9 |
from typing import Dict, Any, Optional, List
|
| 10 |
-
import
|
| 11 |
-
import json
|
| 12 |
import threading
|
| 13 |
import time
|
| 14 |
from collections import defaultdict
|
| 15 |
-
import
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
import
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
# Configure logging
|
| 21 |
logging.basicConfig(
|
| 22 |
level=logging.INFO,
|
| 23 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
)
|
| 25 |
logger = logging.getLogger(__name__)
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
app = FastAPI(title="Advanced RAG Chat Service", version="1.0.0")
|
| 29 |
-
|
| 30 |
-
# Add CORS middleware
|
| 31 |
-
app.add_middleware(
|
| 32 |
-
CORSMiddleware,
|
| 33 |
-
allow_origins=["*"], # Configure this properly in production
|
| 34 |
-
allow_credentials=True,
|
| 35 |
-
allow_methods=["*"],
|
| 36 |
-
allow_headers=["*"],
|
| 37 |
-
)
|
| 38 |
-
|
| 39 |
-
# Global variables
|
| 40 |
MONGO_CLIENT = None
|
| 41 |
DB = None
|
| 42 |
RAG_INITIALIZED = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
STORE_LOCK = threading.RLock()
|
| 48 |
-
CLEANUP_INTERVAL = 3600 # 1 hour cleanup interval
|
| 49 |
-
STORE_TTL = 30 * 60 # 24 hours TTL for in-memory stores
|
| 50 |
|
| 51 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
class ChatRequest(BaseModel):
|
| 53 |
-
message: str
|
| 54 |
|
| 55 |
class ChatResponse(BaseModel):
|
| 56 |
success: bool
|
| 57 |
answer: str
|
| 58 |
-
sources: List[Dict[str, Any]]
|
| 59 |
-
chat_history: List[Dict[str, Any]]
|
| 60 |
processing_time: float
|
| 61 |
session_id: str
|
| 62 |
query_analysis: Optional[Dict[str, Any]] = None
|
| 63 |
confidence: Optional[float] = None
|
|
|
|
| 64 |
|
| 65 |
class InitRequest(BaseModel):
|
| 66 |
-
|
| 67 |
|
| 68 |
class InitResponse(BaseModel):
|
| 69 |
success: bool
|
| 70 |
session_id: str
|
| 71 |
message: str
|
| 72 |
-
chunk_count: int
|
| 73 |
-
title: str
|
| 74 |
document_info: Optional[Dict[str, Any]] = None
|
|
|
|
| 75 |
|
| 76 |
class HealthResponse(BaseModel):
|
| 77 |
status: str
|
| 78 |
mongodb_connected: bool
|
| 79 |
rag_initialized: bool
|
|
|
|
| 80 |
active_sessions: int
|
| 81 |
memory_usage: Dict[str, Any]
|
|
|
|
|
|
|
| 82 |
|
| 83 |
def create_session_logger(session_id: str):
|
| 84 |
"""Create a logger with session context"""
|
| 85 |
-
return logging.LoggerAdapter(logger, {'session_id': session_id})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
def connect_mongodb():
|
| 88 |
-
"""Initialize MongoDB connection"""
|
| 89 |
global MONGO_CLIENT, DB
|
|
|
|
| 90 |
try:
|
| 91 |
mongodb_url = os.getenv("MONGODB_URL", "mongodb://localhost:27017/")
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
# Test connection
|
| 96 |
-
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
|
|
|
| 105 |
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
except Exception as e:
|
| 107 |
logger.error(f"MongoDB connection failed: {e}")
|
|
|
|
| 108 |
return False
|
| 109 |
|
| 110 |
def initialize_rag():
|
| 111 |
-
"""Initialize RAG system"""
|
| 112 |
global RAG_INITIALIZED
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
try:
|
| 114 |
model_id = os.getenv("EMBEDDING_MODEL_ID", "sentence-transformers/all-MiniLM-L6-v2")
|
| 115 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 116 |
|
| 117 |
-
logger.info(f"Initializing RAG system with model: {model_id}")
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
RAG_INITIALIZED = True
|
|
|
|
| 121 |
logger.info("RAG system initialized successfully")
|
| 122 |
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
except Exception as e:
|
| 124 |
logger.error(f"RAG initialization failed: {e}")
|
|
|
|
|
|
|
| 125 |
return False
|
| 126 |
|
| 127 |
-
def
|
| 128 |
-
"""
|
| 129 |
try:
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
except Exception as e:
|
| 132 |
logger.error(f"Failed to decode embedding: {e}")
|
| 133 |
return np.array([])
|
| 134 |
|
| 135 |
def load_session_from_mongodb(session_id: str) -> Dict[str, Any]:
|
| 136 |
-
"""Load session
|
| 137 |
session_logger = create_session_logger(session_id)
|
| 138 |
|
|
|
|
|
|
|
|
|
|
| 139 |
try:
|
| 140 |
-
# Get session metadata
|
| 141 |
session_doc = DB.sessions.find_one({"session_id": session_id})
|
| 142 |
if not session_doc:
|
| 143 |
-
raise ValueError(f"Session {session_id} not found")
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
|
|
|
| 147 |
|
| 148 |
-
session_logger.info("Loading session
|
| 149 |
|
| 150 |
-
#
|
| 151 |
chunks_cursor = DB.chunks.find({"session_id": session_id}).sort("created_at", 1)
|
| 152 |
chunks_list = list(chunks_cursor)
|
| 153 |
|
| 154 |
if not chunks_list:
|
| 155 |
raise ValueError(f"No chunks found for session {session_id}")
|
| 156 |
|
| 157 |
-
session_logger.info(f"Found {len(chunks_list)} chunks
|
| 158 |
|
| 159 |
-
#
|
| 160 |
processed_chunks = []
|
| 161 |
embeddings_matrix = []
|
|
|
|
| 162 |
|
| 163 |
for i, chunk_doc in enumerate(chunks_list):
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
continue
|
| 174 |
-
|
| 175 |
-
# Format chunk for RAG system
|
| 176 |
-
processed_chunk = {
|
| 177 |
-
'id': chunk_doc.get('chunk_id', f'chunk_{i}'),
|
| 178 |
-
'text': chunk_doc['text'],
|
| 179 |
-
'title': chunk_doc.get('title', session_doc.get('title', 'Document')),
|
| 180 |
-
'section_type': chunk_doc.get('section_type', 'content'),
|
| 181 |
-
'importance_score': chunk_doc.get('importance_score', 1.0),
|
| 182 |
-
'entities': chunk_doc.get('entities', []),
|
| 183 |
-
'embedding': embedding # Precomputed embedding as numpy array
|
| 184 |
-
}
|
| 185 |
-
|
| 186 |
-
processed_chunks.append(processed_chunk)
|
| 187 |
-
embeddings_matrix.append(embedding)
|
| 188 |
|
| 189 |
if not processed_chunks:
|
| 190 |
-
raise ValueError(f"No valid chunks
|
| 191 |
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
| 193 |
embeddings_matrix = np.vstack(embeddings_matrix).astype('float32')
|
| 194 |
|
|
|
|
| 195 |
session_store = {
|
| 196 |
"chunks": processed_chunks,
|
| 197 |
"embeddings_matrix": embeddings_matrix,
|
| 198 |
-
"faiss_index": None,
|
| 199 |
"indexed": False,
|
| 200 |
"metadata": {
|
| 201 |
"session_id": session_id,
|
| 202 |
-
"title": session_doc.get("
|
| 203 |
"chunk_count": len(processed_chunks),
|
|
|
|
| 204 |
"loaded_at": datetime.utcnow(),
|
| 205 |
"document_info": {
|
| 206 |
"filename": session_doc.get("filename", "Unknown"),
|
|
@@ -212,17 +319,21 @@ def load_session_from_mongodb(session_id: str) -> Dict[str, Any]:
|
|
| 212 |
}
|
| 213 |
}
|
| 214 |
|
| 215 |
-
session_logger.info(f"
|
| 216 |
return session_store
|
| 217 |
|
| 218 |
except Exception as e:
|
| 219 |
-
session_logger.error(f"Failed to load session
|
|
|
|
| 220 |
raise
|
| 221 |
|
| 222 |
-
def
|
| 223 |
-
"""Build FAISS index
|
| 224 |
session_logger = create_session_logger(session_id)
|
| 225 |
|
|
|
|
|
|
|
|
|
|
| 226 |
with STORE_LOCK:
|
| 227 |
if session_id not in SESSION_STORES:
|
| 228 |
raise ValueError(f"Session {session_id} not loaded")
|
|
@@ -236,60 +347,76 @@ def build_faiss_index_from_embeddings(session_id: str) -> Dict[str, Any]:
|
|
| 236 |
embeddings_matrix = store["embeddings_matrix"]
|
| 237 |
|
| 238 |
try:
|
| 239 |
-
session_logger.info(f"Building FAISS index
|
| 240 |
|
| 241 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
dimension = embeddings_matrix.shape[1]
|
| 243 |
faiss_index = faiss.IndexFlatIP(dimension)
|
| 244 |
-
|
| 245 |
-
# Add embeddings to FAISS index
|
| 246 |
faiss_index.add(embeddings_matrix)
|
| 247 |
|
| 248 |
-
#
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
# BM25 index for sparse retrieval
|
| 256 |
-
tokenized_corpus = [chunk['text'].lower().split() for chunk in chunks]
|
| 257 |
-
rag.BM25_INDEX = rag.BM25Okapi(tokenized_corpus)
|
| 258 |
-
|
| 259 |
-
# ColBERT-style token index
|
| 260 |
-
rag.TOKEN_TO_CHUNKS = defaultdict(set)
|
| 261 |
-
for i, chunk in enumerate(chunks):
|
| 262 |
-
tokens = chunk['text'].lower().split()
|
| 263 |
-
for token in tokens:
|
| 264 |
-
rag.TOKEN_TO_CHUNKS[token].add(i)
|
| 265 |
-
|
| 266 |
-
# Legal concept graph
|
| 267 |
-
import networkx as nx
|
| 268 |
-
rag.CONCEPT_GRAPH = nx.Graph()
|
| 269 |
-
for i, chunk in enumerate(chunks):
|
| 270 |
-
rag.CONCEPT_GRAPH.add_node(i, text=chunk['text'][:200], importance=chunk['importance_score'])
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
with STORE_LOCK:
|
| 281 |
SESSION_STORES[session_id]["faiss_index"] = faiss_index
|
| 282 |
SESSION_STORES[session_id]["indexed"] = True
|
| 283 |
|
| 284 |
-
session_logger.info(
|
| 285 |
return SESSION_STORES[session_id]["metadata"]
|
| 286 |
|
| 287 |
except Exception as e:
|
| 288 |
-
session_logger.error(f"Failed to build FAISS index
|
|
|
|
| 289 |
raise
|
| 290 |
|
| 291 |
-
def
|
| 292 |
-
"""Save chat message
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
try:
|
| 294 |
chat_doc = {
|
| 295 |
"session_id": session_id,
|
|
@@ -301,8 +428,11 @@ def save_chat_message(session_id: str, role: str, message: str):
|
|
| 301 |
except Exception as e:
|
| 302 |
logger.error(f"Failed to save chat message for session {session_id}: {e}")
|
| 303 |
|
| 304 |
-
def
|
| 305 |
-
"""Get chat history
|
|
|
|
|
|
|
|
|
|
| 306 |
try:
|
| 307 |
chats_cursor = DB.chats.find(
|
| 308 |
{"session_id": session_id}
|
|
@@ -322,14 +452,8 @@ def get_chat_history(session_id: str, limit: int = 50) -> List[Dict[str, Any]]:
|
|
| 322 |
logger.error(f"Failed to get chat history for session {session_id}: {e}")
|
| 323 |
return []
|
| 324 |
|
| 325 |
-
|
| 326 |
-
from
|
| 327 |
-
|
| 328 |
-
# Global cleanup task
|
| 329 |
-
cleanup_task = None
|
| 330 |
-
|
| 331 |
-
def cleanup_old_stores():
|
| 332 |
-
"""Background cleanup of old in-memory stores - single run"""
|
| 333 |
try:
|
| 334 |
current_time = datetime.utcnow()
|
| 335 |
expired_sessions = []
|
|
@@ -337,63 +461,119 @@ def cleanup_old_stores():
|
|
| 337 |
with STORE_LOCK:
|
| 338 |
for session_id, store in SESSION_STORES.items():
|
| 339 |
loaded_at = store["metadata"]["loaded_at"]
|
| 340 |
-
|
|
|
|
|
|
|
|
|
|
| 341 |
expired_sessions.append(session_id)
|
| 342 |
|
|
|
|
| 343 |
for session_id in expired_sessions:
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
|
| 350 |
if expired_sessions:
|
| 351 |
-
logger.info(f"
|
|
|
|
|
|
|
| 352 |
|
| 353 |
except Exception as e:
|
| 354 |
-
logger.error(f"
|
|
|
|
| 355 |
|
| 356 |
async def periodic_cleanup():
|
| 357 |
-
"""
|
| 358 |
-
|
| 359 |
try:
|
| 360 |
while True:
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
await asyncio.sleep(CLEANUP_INTERVAL)
|
|
|
|
| 363 |
except asyncio.CancelledError:
|
| 364 |
-
logger.info("
|
| 365 |
raise
|
| 366 |
except Exception as e:
|
| 367 |
-
logger.error(f"Periodic cleanup error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
@asynccontextmanager
|
| 370 |
async def lifespan(app: FastAPI):
|
| 371 |
-
"""Application lifespan
|
| 372 |
global cleanup_task
|
| 373 |
|
| 374 |
# Startup
|
| 375 |
-
logger.info("Starting
|
|
|
|
| 376 |
|
| 377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
if not connect_mongodb():
|
| 379 |
-
logger.error("
|
| 380 |
-
raise Exception("MongoDB connection failed")
|
| 381 |
|
| 382 |
-
# Initialize RAG system
|
| 383 |
-
if
|
| 384 |
-
|
| 385 |
-
|
| 386 |
|
| 387 |
-
# Start
|
| 388 |
-
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
-
|
|
|
|
|
|
|
|
|
|
| 392 |
|
| 393 |
yield
|
| 394 |
|
| 395 |
# Shutdown
|
| 396 |
-
logger.info("Shutting down
|
| 397 |
|
| 398 |
if cleanup_task:
|
| 399 |
cleanup_task.cancel()
|
|
@@ -407,153 +587,237 @@ async def lifespan(app: FastAPI):
|
|
| 407 |
|
| 408 |
logger.info("Shutdown completed")
|
| 409 |
|
| 410 |
-
#
|
| 411 |
app = FastAPI(
|
| 412 |
-
title="Advanced RAG Chat Service",
|
| 413 |
-
|
|
|
|
| 414 |
lifespan=lifespan
|
| 415 |
)
|
| 416 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
|
| 419 |
@app.get("/health", response_model=HealthResponse)
|
| 420 |
async def health_check():
|
| 421 |
-
"""
|
| 422 |
try:
|
| 423 |
-
#
|
| 424 |
mongodb_connected = False
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
if DB is not None:
|
| 428 |
try:
|
| 429 |
DB.command("ping")
|
| 430 |
mongodb_connected = True
|
| 431 |
-
# Count sessions with recent chats
|
| 432 |
-
one_hour_ago = datetime.utcnow() - timedelta(hours=1)
|
| 433 |
-
active_sessions = len(DB.chats.distinct("session_id", {"created_at": {"$gte": one_hour_ago}}))
|
| 434 |
except:
|
| 435 |
pass
|
| 436 |
|
| 437 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 438 |
with STORE_LOCK:
|
| 439 |
memory_sessions = len(SESSION_STORES)
|
| 440 |
indexed_sessions = sum(1 for store in SESSION_STORES.values() if store["indexed"])
|
| 441 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
return HealthResponse(
|
| 443 |
-
status=
|
| 444 |
mongodb_connected=mongodb_connected,
|
| 445 |
rag_initialized=RAG_INITIALIZED,
|
| 446 |
-
|
|
|
|
| 447 |
memory_usage={
|
| 448 |
"loaded_sessions": memory_sessions,
|
| 449 |
"indexed_sessions": indexed_sessions,
|
| 450 |
-
"
|
| 451 |
-
|
|
|
|
|
|
|
|
|
|
| 452 |
)
|
|
|
|
| 453 |
except Exception as e:
|
| 454 |
logger.error(f"Health check failed: {e}")
|
| 455 |
return HealthResponse(
|
| 456 |
status="unhealthy",
|
| 457 |
mongodb_connected=False,
|
| 458 |
rag_initialized=False,
|
|
|
|
| 459 |
active_sessions=0,
|
| 460 |
-
memory_usage={}
|
|
|
|
|
|
|
| 461 |
)
|
| 462 |
|
| 463 |
@app.post("/init/{session_id}", response_model=InitResponse)
|
| 464 |
async def initialize_session(session_id: str, request: InitRequest):
|
| 465 |
-
"""Initialize
|
| 466 |
session_logger = create_session_logger(session_id)
|
| 467 |
|
| 468 |
-
if DB is None:
|
| 469 |
-
raise HTTPException(status_code=503, detail="Database not connected")
|
| 470 |
-
|
| 471 |
-
if not RAG_INITIALIZED:
|
| 472 |
-
raise HTTPException(status_code=503, detail="RAG system not initialized")
|
| 473 |
-
|
| 474 |
-
# Check if already loaded and indexed
|
| 475 |
-
with STORE_LOCK:
|
| 476 |
-
if session_id in SESSION_STORES and SESSION_STORES[session_id]["indexed"]:
|
| 477 |
-
store = SESSION_STORES[session_id]
|
| 478 |
-
metadata = store["metadata"]
|
| 479 |
-
session_logger.info("Session already initialized and indexed with precomputed embeddings")
|
| 480 |
-
return InitResponse(
|
| 481 |
-
success=True,
|
| 482 |
-
session_id=session_id,
|
| 483 |
-
message="Session already initialized with precomputed embeddings",
|
| 484 |
-
chunk_count=metadata["chunk_count"],
|
| 485 |
-
title=metadata["title"],
|
| 486 |
-
document_info=metadata["document_info"]
|
| 487 |
-
)
|
| 488 |
-
|
| 489 |
try:
|
| 490 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 491 |
|
| 492 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
session_store = load_session_from_mongodb(session_id)
|
| 494 |
|
| 495 |
# Store in memory
|
| 496 |
with STORE_LOCK:
|
| 497 |
SESSION_STORES[session_id] = session_store
|
|
|
|
| 498 |
|
| 499 |
-
# Build FAISS index
|
| 500 |
-
metadata =
|
| 501 |
|
| 502 |
-
session_logger.info(f"Session initialized
|
| 503 |
|
| 504 |
return InitResponse(
|
| 505 |
success=True,
|
| 506 |
session_id=session_id,
|
| 507 |
-
message=f"Session initialized with
|
| 508 |
chunk_count=metadata["chunk_count"],
|
| 509 |
title=metadata["title"],
|
| 510 |
document_info=metadata["document_info"]
|
| 511 |
)
|
| 512 |
|
|
|
|
|
|
|
| 513 |
except ValueError as e:
|
| 514 |
-
session_logger.error(f"Session initialization
|
| 515 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
except Exception as e:
|
| 517 |
session_logger.error(f"Session initialization error: {e}")
|
| 518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
|
| 520 |
@app.post("/chat/{session_id}", response_model=ChatResponse)
|
| 521 |
async def chat_with_document(session_id: str, request: ChatRequest):
|
| 522 |
-
"""
|
| 523 |
session_logger = create_session_logger(session_id)
|
| 524 |
start_time = time.time()
|
| 525 |
|
| 526 |
-
if DB is None:
|
| 527 |
-
raise HTTPException(status_code=503, detail="Database not connected")
|
| 528 |
-
|
| 529 |
-
if not RAG_INITIALIZED:
|
| 530 |
-
raise HTTPException(status_code=503, detail="RAG system not initialized")
|
| 531 |
-
|
| 532 |
-
# Validate request
|
| 533 |
-
if not request.message.strip():
|
| 534 |
-
raise HTTPException(status_code=400, detail="Empty message provided")
|
| 535 |
-
|
| 536 |
try:
|
| 537 |
-
|
|
|
|
|
|
|
| 538 |
|
| 539 |
-
|
|
|
|
|
|
|
|
|
|
| 540 |
with STORE_LOCK:
|
| 541 |
if session_id not in SESSION_STORES:
|
| 542 |
raise HTTPException(
|
| 543 |
-
status_code=400,
|
| 544 |
-
detail=f"Session
|
| 545 |
)
|
| 546 |
|
| 547 |
if not SESSION_STORES[session_id]["indexed"]:
|
| 548 |
raise HTTPException(
|
| 549 |
status_code=400,
|
| 550 |
-
detail=
|
| 551 |
)
|
| 552 |
|
| 553 |
-
|
| 554 |
-
result = rag.query_documents(request.message, top_k=5)
|
| 555 |
|
| 556 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
raise HTTPException(status_code=500, detail=result['error'])
|
| 558 |
|
| 559 |
answer = result.get('answer', 'Unable to generate answer.')
|
|
@@ -561,28 +825,31 @@ async def chat_with_document(session_id: str, request: ChatRequest):
|
|
| 561 |
query_analysis = result.get('query_analysis', {})
|
| 562 |
confidence = result.get('confidence', 0.0)
|
| 563 |
|
| 564 |
-
# Save chat messages
|
| 565 |
-
|
| 566 |
-
|
| 567 |
|
| 568 |
-
# Get
|
| 569 |
-
chat_history =
|
| 570 |
|
| 571 |
processing_time = time.time() - start_time
|
| 572 |
-
session_logger.info(f"
|
| 573 |
-
|
| 574 |
-
#
|
| 575 |
-
formatted_sources = [
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
|
|
|
|
|
|
|
|
|
| 586 |
|
| 587 |
return ChatResponse(
|
| 588 |
success=True,
|
|
@@ -598,19 +865,30 @@ async def chat_with_document(session_id: str, request: ChatRequest):
|
|
| 598 |
except HTTPException:
|
| 599 |
raise
|
| 600 |
except Exception as e:
|
| 601 |
-
session_logger.error(f"
|
| 602 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 603 |
|
| 604 |
@app.get("/history/{session_id}")
|
| 605 |
async def get_session_history(session_id: str):
|
| 606 |
"""Get chat history for a session"""
|
| 607 |
session_logger = create_session_logger(session_id)
|
| 608 |
|
| 609 |
-
if DB
|
| 610 |
raise HTTPException(status_code=503, detail="Database not connected")
|
| 611 |
|
| 612 |
try:
|
| 613 |
-
chat_history =
|
| 614 |
|
| 615 |
session_logger.info(f"Retrieved {len(chat_history)} chat messages")
|
| 616 |
|
|
@@ -631,15 +909,31 @@ async def cleanup_session(session_id: str):
|
|
| 631 |
session_logger = create_session_logger(session_id)
|
| 632 |
|
| 633 |
try:
|
| 634 |
-
|
|
|
|
| 635 |
with STORE_LOCK:
|
| 636 |
if session_id in SESSION_STORES:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 637 |
# Clean up FAISS index
|
| 638 |
-
if
|
| 639 |
-
del
|
|
|
|
| 640 |
del SESSION_STORES[session_id]
|
|
|
|
|
|
|
| 641 |
session_logger.info("Session removed from memory")
|
| 642 |
|
|
|
|
|
|
|
|
|
|
| 643 |
return {
|
| 644 |
"success": True,
|
| 645 |
"message": f"Session {session_id} cleaned up successfully"
|
|
@@ -651,65 +945,128 @@ async def cleanup_session(session_id: str):
|
|
| 651 |
|
| 652 |
@app.get("/sessions/active")
|
| 653 |
async def get_active_sessions():
|
| 654 |
-
"""Get information about active sessions in memory"""
|
| 655 |
try:
|
|
|
|
|
|
|
| 656 |
with STORE_LOCK:
|
| 657 |
active_sessions = []
|
| 658 |
for session_id, store in SESSION_STORES.items():
|
| 659 |
metadata = store["metadata"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 660 |
active_sessions.append({
|
| 661 |
"session_id": session_id,
|
| 662 |
"title": metadata["title"],
|
| 663 |
"chunk_count": metadata["chunk_count"],
|
| 664 |
"indexed": store["indexed"],
|
| 665 |
-
"
|
| 666 |
-
"
|
| 667 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 668 |
})
|
|
|
|
|
|
|
|
|
|
| 669 |
|
| 670 |
return {
|
| 671 |
"success": True,
|
| 672 |
"active_sessions": active_sessions,
|
| 673 |
-
"total_sessions": len(active_sessions)
|
|
|
|
|
|
|
|
|
|
| 674 |
}
|
| 675 |
|
| 676 |
except Exception as e:
|
| 677 |
logger.error(f"Failed to get active sessions: {e}")
|
| 678 |
raise HTTPException(status_code=500, detail=f"Failed to get active sessions: {str(e)}")
|
| 679 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 680 |
@app.get("/rag/status")
|
| 681 |
async def get_rag_status():
|
| 682 |
-
"""Get
|
| 683 |
try:
|
| 684 |
return {
|
| 685 |
"success": True,
|
| 686 |
"rag_initialized": RAG_INITIALIZED,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 687 |
"optimization": {
|
| 688 |
-
"
|
| 689 |
-
"no_reembedding": True,
|
| 690 |
"persistent_faiss_index": True,
|
| 691 |
-
"mongodb_persistence": True
|
|
|
|
| 692 |
},
|
| 693 |
"features": {
|
| 694 |
"multi_stage_retrieval": True,
|
| 695 |
-
"dense_retrieval": "FAISS +
|
| 696 |
-
"sparse_retrieval": "BM25",
|
| 697 |
-
"entity_based_retrieval": "Legal NER + SpaCy",
|
| 698 |
-
"graph_based_retrieval": "Legal Concept Graph",
|
| 699 |
"query_analysis": "Legal Intent Classification",
|
| 700 |
"answer_generation": "Groq LLM with IRAC Method"
|
| 701 |
},
|
| 702 |
-
"
|
| 703 |
-
|
| 704 |
-
"BM25 Sparse Retrieval",
|
| 705 |
-
"ColBERT Token Matching",
|
| 706 |
-
"Legal Entity Matching",
|
| 707 |
-
"Concept Graph Expansion",
|
| 708 |
-
"HyDE Query Expansion",
|
| 709 |
-
"Multi-Query Retrieval",
|
| 710 |
-
"Legal Section Classification",
|
| 711 |
-
"Importance-based Ranking"
|
| 712 |
-
]
|
| 713 |
}
|
| 714 |
|
| 715 |
except Exception as e:
|
|
@@ -719,4 +1076,5 @@ async def get_rag_status():
|
|
| 719 |
if __name__ == "__main__":
|
| 720 |
import uvicorn
|
| 721 |
port = int(os.getenv("PORT", 7861))
|
|
|
|
| 722 |
uvicorn.run(app, host="0.0.0.0", port=port)
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel, Field
|
| 4 |
import pymongo
|
| 5 |
import os
|
| 6 |
import numpy as np
|
| 7 |
from datetime import datetime, timedelta
|
| 8 |
import logging
|
| 9 |
+
import traceback
|
| 10 |
from typing import Dict, Any, Optional, List
|
| 11 |
+
import asyncio
|
|
|
|
| 12 |
import threading
|
| 13 |
import time
|
| 14 |
from collections import defaultdict
|
| 15 |
+
from contextlib import asynccontextmanager
|
| 16 |
+
import sys
|
| 17 |
|
| 18 |
+
try:
|
| 19 |
+
import faiss
|
| 20 |
+
FAISS_AVAILABLE = True
|
| 21 |
+
except ImportError:
|
| 22 |
+
FAISS_AVAILABLE = False
|
| 23 |
|
| 24 |
+
# Configure comprehensive logging
|
| 25 |
logging.basicConfig(
|
| 26 |
level=logging.INFO,
|
| 27 |
+
format='%(asctime)s - %(name)s - %(levelname)s - [%(funcName)s:%(lineno)d] - %(message)s',
|
| 28 |
+
handlers=[
|
| 29 |
+
logging.StreamHandler(sys.stdout),
|
| 30 |
+
logging.FileHandler('rag_app.log', mode='a')
|
| 31 |
+
]
|
| 32 |
)
|
| 33 |
logger = logging.getLogger(__name__)
|
| 34 |
|
| 35 |
+
# Global state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
MONGO_CLIENT = None
|
| 37 |
DB = None
|
| 38 |
RAG_INITIALIZED = False
|
| 39 |
+
RAG_MODULE = None
|
| 40 |
+
APP_STATE = {
|
| 41 |
+
"startup_time": None,
|
| 42 |
+
"mongodb_connected": False,
|
| 43 |
+
"rag_ready": False,
|
| 44 |
+
"active_sessions": 0,
|
| 45 |
+
"total_queries": 0,
|
| 46 |
+
"errors": []
|
| 47 |
+
}
|
| 48 |
|
| 49 |
+
# Configuration - Session memory management
|
| 50 |
+
CLEANUP_INTERVAL = 1800 # Run cleanup every 30 minutes (1800 seconds)
|
| 51 |
+
STORE_TTL = 1800 # Sessions expire after 30 minutes of inactivity (1800 seconds)
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
# You can adjust these values:
|
| 54 |
+
# STORE_TTL = 900 # 15 minutes
|
| 55 |
+
# STORE_TTL = 3600 # 1 hour
|
| 56 |
+
# STORE_TTL = 7200 # 2 hours
|
| 57 |
+
|
| 58 |
+
# Request/Response models with validation
|
| 59 |
class ChatRequest(BaseModel):
|
| 60 |
+
message: str = Field(..., min_length=1, max_length=5000, description="User's query message")
|
| 61 |
|
| 62 |
class ChatResponse(BaseModel):
|
| 63 |
success: bool
|
| 64 |
answer: str
|
| 65 |
+
sources: List[Dict[str, Any]] = Field(default_factory=list)
|
| 66 |
+
chat_history: List[Dict[str, Any]] = Field(default_factory=list)
|
| 67 |
processing_time: float
|
| 68 |
session_id: str
|
| 69 |
query_analysis: Optional[Dict[str, Any]] = None
|
| 70 |
confidence: Optional[float] = None
|
| 71 |
+
error_details: Optional[str] = None
|
| 72 |
|
| 73 |
class InitRequest(BaseModel):
|
| 74 |
+
force_reload: bool = Field(default=False, description="Force reload session even if already loaded")
|
| 75 |
|
| 76 |
class InitResponse(BaseModel):
|
| 77 |
success: bool
|
| 78 |
session_id: str
|
| 79 |
message: str
|
| 80 |
+
chunk_count: int = Field(default=0)
|
| 81 |
+
title: str = Field(default="Unknown Document")
|
| 82 |
document_info: Optional[Dict[str, Any]] = None
|
| 83 |
+
error_details: Optional[str] = None
|
| 84 |
|
| 85 |
class HealthResponse(BaseModel):
|
| 86 |
status: str
|
| 87 |
mongodb_connected: bool
|
| 88 |
rag_initialized: bool
|
| 89 |
+
faiss_available: bool
|
| 90 |
active_sessions: int
|
| 91 |
memory_usage: Dict[str, Any]
|
| 92 |
+
uptime_seconds: float
|
| 93 |
+
last_error: Optional[str] = None
|
| 94 |
|
| 95 |
def create_session_logger(session_id: str):
|
| 96 |
"""Create a logger with session context"""
|
| 97 |
+
return logging.LoggerAdapter(logger, {'session_id': session_id[:8]})
|
| 98 |
+
|
| 99 |
+
def safe_import_rag():
|
| 100 |
+
"""Safely import RAG module with error handling"""
|
| 101 |
+
global RAG_MODULE
|
| 102 |
+
try:
|
| 103 |
+
import rag
|
| 104 |
+
RAG_MODULE = rag
|
| 105 |
+
logger.info("RAG module imported successfully")
|
| 106 |
+
return True
|
| 107 |
+
except ImportError as e:
|
| 108 |
+
logger.error(f"Failed to import RAG module: {e}")
|
| 109 |
+
logger.error("Make sure rag.py is in the same directory and all dependencies are installed")
|
| 110 |
+
return False
|
| 111 |
+
except Exception as e:
|
| 112 |
+
logger.error(f"Unexpected error importing RAG module: {e}")
|
| 113 |
+
logger.error(traceback.format_exc())
|
| 114 |
+
return False
|
| 115 |
|
| 116 |
def connect_mongodb():
|
| 117 |
+
"""Initialize MongoDB connection with comprehensive error handling"""
|
| 118 |
global MONGO_CLIENT, DB
|
| 119 |
+
|
| 120 |
try:
|
| 121 |
mongodb_url = os.getenv("MONGODB_URL", "mongodb://localhost:27017/")
|
| 122 |
+
if not mongodb_url or mongodb_url == "mongodb://localhost:27017/":
|
| 123 |
+
logger.warning("Using default MongoDB URL - set MONGODB_URL environment variable for production")
|
| 124 |
+
|
| 125 |
+
logger.info(f"Connecting to MongoDB: {mongodb_url[:20]}...")
|
| 126 |
+
MONGO_CLIENT = pymongo.MongoClient(
|
| 127 |
+
mongodb_url,
|
| 128 |
+
serverSelectionTimeoutMS=10000, # 10 second timeout
|
| 129 |
+
connectTimeoutMS=10000,
|
| 130 |
+
socketTimeoutMS=10000
|
| 131 |
+
)
|
| 132 |
|
| 133 |
# Test connection
|
| 134 |
+
MONGO_CLIENT.admin.command('ping')
|
| 135 |
+
DB = MONGO_CLIENT["legal_rag_system"]
|
| 136 |
|
| 137 |
+
logger.info("Creating MongoDB indexes...")
|
| 138 |
+
# Create indexes with error handling
|
| 139 |
+
try:
|
| 140 |
+
DB.chats.create_index("session_id", background=True)
|
| 141 |
+
DB.chats.create_index("created_at", expireAfterSeconds=24*60*60, background=True)
|
| 142 |
+
DB.chats.create_index([("session_id", 1), ("created_at", 1)], background=True)
|
| 143 |
+
logger.info("MongoDB indexes created successfully")
|
| 144 |
+
except Exception as idx_error:
|
| 145 |
+
logger.warning(f"Index creation failed (non-critical): {idx_error}")
|
| 146 |
|
| 147 |
+
APP_STATE["mongodb_connected"] = True
|
| 148 |
+
logger.info("MongoDB connected and configured successfully")
|
| 149 |
return True
|
| 150 |
+
|
| 151 |
+
except pymongo.errors.ServerSelectionTimeoutError:
|
| 152 |
+
logger.error("MongoDB connection timeout - check if MongoDB is running and accessible")
|
| 153 |
+
return False
|
| 154 |
+
except pymongo.errors.ConfigurationError as e:
|
| 155 |
+
logger.error(f"MongoDB configuration error: {e}")
|
| 156 |
+
return False
|
| 157 |
except Exception as e:
|
| 158 |
logger.error(f"MongoDB connection failed: {e}")
|
| 159 |
+
logger.error(traceback.format_exc())
|
| 160 |
return False
|
| 161 |
|
| 162 |
def initialize_rag():
|
| 163 |
+
"""Initialize RAG system with comprehensive error handling"""
|
| 164 |
global RAG_INITIALIZED
|
| 165 |
+
|
| 166 |
+
if not RAG_MODULE:
|
| 167 |
+
logger.error("RAG module not available - cannot initialize")
|
| 168 |
+
return False
|
| 169 |
+
|
| 170 |
+
if not FAISS_AVAILABLE:
|
| 171 |
+
logger.error("FAISS library not available - RAG system requires FAISS")
|
| 172 |
+
return False
|
| 173 |
+
|
| 174 |
try:
|
| 175 |
model_id = os.getenv("EMBEDDING_MODEL_ID", "sentence-transformers/all-MiniLM-L6-v2")
|
| 176 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 177 |
|
| 178 |
+
logger.info(f"Initializing RAG system with embedding model: {model_id}")
|
| 179 |
+
|
| 180 |
+
if groq_api_key:
|
| 181 |
+
logger.info("Groq API key found - full RAG capabilities available")
|
| 182 |
+
else:
|
| 183 |
+
logger.warning("No Groq API key - some RAG features may be limited")
|
| 184 |
+
|
| 185 |
+
# Initialize with timeout protection
|
| 186 |
+
RAG_MODULE.initialize_models(model_id, groq_api_key)
|
| 187 |
|
| 188 |
RAG_INITIALIZED = True
|
| 189 |
+
APP_STATE["rag_ready"] = True
|
| 190 |
logger.info("RAG system initialized successfully")
|
| 191 |
return True
|
| 192 |
+
|
| 193 |
+
except ImportError as e:
|
| 194 |
+
logger.error(f"Missing dependencies for RAG initialization: {e}")
|
| 195 |
+
return False
|
| 196 |
except Exception as e:
|
| 197 |
logger.error(f"RAG initialization failed: {e}")
|
| 198 |
+
logger.error(traceback.format_exc())
|
| 199 |
+
APP_STATE["errors"].append(f"RAG init failed: {str(e)}")
|
| 200 |
return False
|
| 201 |
|
| 202 |
+
def decode_embedding_safely(embedding_list: List[float]) -> np.ndarray:
|
| 203 |
+
"""Safely convert embedding from storage with validation"""
|
| 204 |
try:
|
| 205 |
+
if not embedding_list or not isinstance(embedding_list, list):
|
| 206 |
+
raise ValueError("Invalid embedding data")
|
| 207 |
+
|
| 208 |
+
embedding = np.array(embedding_list, dtype=np.float32)
|
| 209 |
+
|
| 210 |
+
if embedding.size == 0:
|
| 211 |
+
raise ValueError("Empty embedding")
|
| 212 |
+
|
| 213 |
+
if np.isnan(embedding).any() or np.isinf(embedding).any():
|
| 214 |
+
raise ValueError("Embedding contains invalid values")
|
| 215 |
+
|
| 216 |
+
return embedding
|
| 217 |
+
|
| 218 |
except Exception as e:
|
| 219 |
logger.error(f"Failed to decode embedding: {e}")
|
| 220 |
return np.array([])
|
| 221 |
|
| 222 |
def load_session_from_mongodb(session_id: str) -> Dict[str, Any]:
|
| 223 |
+
"""Load session with comprehensive error handling and validation"""
|
| 224 |
session_logger = create_session_logger(session_id)
|
| 225 |
|
| 226 |
+
if not DB:
|
| 227 |
+
raise ValueError("Database not connected")
|
| 228 |
+
|
| 229 |
try:
|
| 230 |
+
# Get and validate session metadata
|
| 231 |
session_doc = DB.sessions.find_one({"session_id": session_id})
|
| 232 |
if not session_doc:
|
| 233 |
+
raise ValueError(f"Session {session_id} not found in database")
|
| 234 |
|
| 235 |
+
session_status = session_doc.get("status")
|
| 236 |
+
if session_status != "completed":
|
| 237 |
+
raise ValueError(f"Session not ready - status: {session_status}")
|
| 238 |
|
| 239 |
+
session_logger.info(f"Loading session: {session_doc.get('filename', 'unknown')}")
|
| 240 |
|
| 241 |
+
# Load chunks with validation
|
| 242 |
chunks_cursor = DB.chunks.find({"session_id": session_id}).sort("created_at", 1)
|
| 243 |
chunks_list = list(chunks_cursor)
|
| 244 |
|
| 245 |
if not chunks_list:
|
| 246 |
raise ValueError(f"No chunks found for session {session_id}")
|
| 247 |
|
| 248 |
+
session_logger.info(f"Found {len(chunks_list)} chunks")
|
| 249 |
|
| 250 |
+
# Process chunks with validation
|
| 251 |
processed_chunks = []
|
| 252 |
embeddings_matrix = []
|
| 253 |
+
failed_chunks = 0
|
| 254 |
|
| 255 |
for i, chunk_doc in enumerate(chunks_list):
|
| 256 |
+
try:
|
| 257 |
+
# Validate required fields
|
| 258 |
+
if 'text' not in chunk_doc or not chunk_doc['text'].strip():
|
| 259 |
+
session_logger.warning(f"Chunk {i} missing or empty text")
|
| 260 |
+
failed_chunks += 1
|
| 261 |
+
continue
|
| 262 |
+
|
| 263 |
+
# Decode embedding
|
| 264 |
+
embedding_list = chunk_doc.get('embedding', [])
|
| 265 |
+
embedding = decode_embedding_safely(embedding_list)
|
| 266 |
+
|
| 267 |
+
if embedding.size == 0:
|
| 268 |
+
session_logger.warning(f"Chunk {i} has invalid embedding")
|
| 269 |
+
failed_chunks += 1
|
| 270 |
+
continue
|
| 271 |
+
|
| 272 |
+
# Create processed chunk
|
| 273 |
+
processed_chunk = {
|
| 274 |
+
'id': chunk_doc.get('chunk_id', f'chunk_{i}'),
|
| 275 |
+
'text': chunk_doc['text'],
|
| 276 |
+
'title': chunk_doc.get('title', session_doc.get('filename', 'Document')),
|
| 277 |
+
'section_type': chunk_doc.get('section_type', 'content'),
|
| 278 |
+
'importance_score': float(chunk_doc.get('importance_score', 1.0)),
|
| 279 |
+
'entities': chunk_doc.get('entities', []),
|
| 280 |
+
'embedding': embedding
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
processed_chunks.append(processed_chunk)
|
| 284 |
+
embeddings_matrix.append(embedding)
|
| 285 |
+
|
| 286 |
+
except Exception as chunk_error:
|
| 287 |
+
session_logger.error(f"Failed to process chunk {i}: {chunk_error}")
|
| 288 |
+
failed_chunks += 1
|
| 289 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
if not processed_chunks:
|
| 292 |
+
raise ValueError(f"No valid chunks could be loaded (failed: {failed_chunks})")
|
| 293 |
|
| 294 |
+
if failed_chunks > 0:
|
| 295 |
+
session_logger.warning(f"Failed to load {failed_chunks} chunks, continuing with {len(processed_chunks)}")
|
| 296 |
+
|
| 297 |
+
# Create embeddings matrix
|
| 298 |
embeddings_matrix = np.vstack(embeddings_matrix).astype('float32')
|
| 299 |
|
| 300 |
+
# Prepare session store
|
| 301 |
session_store = {
|
| 302 |
"chunks": processed_chunks,
|
| 303 |
"embeddings_matrix": embeddings_matrix,
|
| 304 |
+
"faiss_index": None,
|
| 305 |
"indexed": False,
|
| 306 |
"metadata": {
|
| 307 |
"session_id": session_id,
|
| 308 |
+
"title": session_doc.get("filename", "Document"),
|
| 309 |
"chunk_count": len(processed_chunks),
|
| 310 |
+
"failed_chunks": failed_chunks,
|
| 311 |
"loaded_at": datetime.utcnow(),
|
| 312 |
"document_info": {
|
| 313 |
"filename": session_doc.get("filename", "Unknown"),
|
|
|
|
| 319 |
}
|
| 320 |
}
|
| 321 |
|
| 322 |
+
session_logger.info(f"Session loaded successfully: {len(processed_chunks)} chunks")
|
| 323 |
return session_store
|
| 324 |
|
| 325 |
except Exception as e:
|
| 326 |
+
session_logger.error(f"Failed to load session: {e}")
|
| 327 |
+
session_logger.error(traceback.format_exc())
|
| 328 |
raise
|
| 329 |
|
| 330 |
+
def build_faiss_index_safely(session_id: str) -> Dict[str, Any]:
|
| 331 |
+
"""Build FAISS index with error handling"""
|
| 332 |
session_logger = create_session_logger(session_id)
|
| 333 |
|
| 334 |
+
if not FAISS_AVAILABLE:
|
| 335 |
+
raise ValueError("FAISS library not available")
|
| 336 |
+
|
| 337 |
with STORE_LOCK:
|
| 338 |
if session_id not in SESSION_STORES:
|
| 339 |
raise ValueError(f"Session {session_id} not loaded")
|
|
|
|
| 347 |
embeddings_matrix = store["embeddings_matrix"]
|
| 348 |
|
| 349 |
try:
|
| 350 |
+
session_logger.info(f"Building FAISS index for {len(chunks)} chunks...")
|
| 351 |
|
| 352 |
+
# Validate embeddings matrix
|
| 353 |
+
if embeddings_matrix.shape[0] != len(chunks):
|
| 354 |
+
raise ValueError("Embeddings matrix size mismatch with chunks")
|
| 355 |
+
|
| 356 |
+
# Create FAISS index
|
| 357 |
dimension = embeddings_matrix.shape[1]
|
| 358 |
faiss_index = faiss.IndexFlatIP(dimension)
|
|
|
|
|
|
|
| 359 |
faiss_index.add(embeddings_matrix)
|
| 360 |
|
| 361 |
+
# Initialize RAG system components
|
| 362 |
+
if RAG_MODULE:
|
| 363 |
+
RAG_MODULE.CHUNKS_DATA = chunks
|
| 364 |
+
RAG_MODULE.DENSE_INDEX = faiss_index
|
| 365 |
+
|
| 366 |
+
# Build additional indices
|
| 367 |
+
session_logger.info("Building additional retrieval indices...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
+
try:
|
| 370 |
+
# BM25 index
|
| 371 |
+
tokenized_corpus = [chunk['text'].lower().split() for chunk in chunks]
|
| 372 |
+
RAG_MODULE.BM25_INDEX = RAG_MODULE.BM25Okapi(tokenized_corpus)
|
| 373 |
+
|
| 374 |
+
# Token index
|
| 375 |
+
RAG_MODULE.TOKEN_TO_CHUNKS = defaultdict(set)
|
| 376 |
+
for i, chunk in enumerate(chunks):
|
| 377 |
+
tokens = chunk['text'].lower().split()
|
| 378 |
+
for token in tokens:
|
| 379 |
+
RAG_MODULE.TOKEN_TO_CHUNKS[token].add(i)
|
| 380 |
+
|
| 381 |
+
# Concept graph
|
| 382 |
+
import networkx as nx
|
| 383 |
+
RAG_MODULE.CONCEPT_GRAPH = nx.Graph()
|
| 384 |
+
for i, chunk in enumerate(chunks):
|
| 385 |
+
RAG_MODULE.CONCEPT_GRAPH.add_node(
|
| 386 |
+
i,
|
| 387 |
+
text=chunk['text'][:200],
|
| 388 |
+
importance=chunk['importance_score']
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
# Add edges for shared entities
|
| 392 |
+
for j, other_chunk in enumerate(chunks[i+1:], i+1):
|
| 393 |
+
shared_entities = set(e.get('text', '') for e in chunk['entities']) & \
|
| 394 |
+
set(e.get('text', '') for e in other_chunk['entities'])
|
| 395 |
+
if shared_entities:
|
| 396 |
+
RAG_MODULE.CONCEPT_GRAPH.add_edge(i, j, weight=len(shared_entities))
|
| 397 |
+
|
| 398 |
+
except Exception as index_error:
|
| 399 |
+
session_logger.warning(f"Failed to build some retrieval indices: {index_error}")
|
| 400 |
+
|
| 401 |
+
# Mark as indexed
|
| 402 |
with STORE_LOCK:
|
| 403 |
SESSION_STORES[session_id]["faiss_index"] = faiss_index
|
| 404 |
SESSION_STORES[session_id]["indexed"] = True
|
| 405 |
|
| 406 |
+
session_logger.info("FAISS index built successfully")
|
| 407 |
return SESSION_STORES[session_id]["metadata"]
|
| 408 |
|
| 409 |
except Exception as e:
|
| 410 |
+
session_logger.error(f"Failed to build FAISS index: {e}")
|
| 411 |
+
session_logger.error(traceback.format_exc())
|
| 412 |
raise
|
| 413 |
|
| 414 |
+
def save_chat_message_safely(session_id: str, role: str, message: str):
|
| 415 |
+
"""Save chat message with error handling"""
|
| 416 |
+
if not DB:
|
| 417 |
+
logger.warning("Database not available - chat message not saved")
|
| 418 |
+
return
|
| 419 |
+
|
| 420 |
try:
|
| 421 |
chat_doc = {
|
| 422 |
"session_id": session_id,
|
|
|
|
| 428 |
except Exception as e:
|
| 429 |
logger.error(f"Failed to save chat message for session {session_id}: {e}")
|
| 430 |
|
| 431 |
+
def get_chat_history_safely(session_id: str, limit: int = 50) -> List[Dict[str, Any]]:
|
| 432 |
+
"""Get chat history with error handling"""
|
| 433 |
+
if not DB:
|
| 434 |
+
return []
|
| 435 |
+
|
| 436 |
try:
|
| 437 |
chats_cursor = DB.chats.find(
|
| 438 |
{"session_id": session_id}
|
|
|
|
| 452 |
logger.error(f"Failed to get chat history for session {session_id}: {e}")
|
| 453 |
return []
|
| 454 |
|
| 455 |
+
def cleanup_expired_sessions():
|
| 456 |
+
"""Clean up only expired chat sessions from memory, keep server running"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
try:
|
| 458 |
current_time = datetime.utcnow()
|
| 459 |
expired_sessions = []
|
|
|
|
| 461 |
with STORE_LOCK:
|
| 462 |
for session_id, store in SESSION_STORES.items():
|
| 463 |
loaded_at = store["metadata"]["loaded_at"]
|
| 464 |
+
age_seconds = (current_time - loaded_at).total_seconds()
|
| 465 |
+
|
| 466 |
+
# Only expire sessions older than TTL (30 minutes)
|
| 467 |
+
if age_seconds > STORE_TTL:
|
| 468 |
expired_sessions.append(session_id)
|
| 469 |
|
| 470 |
+
# Clean up expired sessions one by one
|
| 471 |
for session_id in expired_sessions:
|
| 472 |
+
try:
|
| 473 |
+
store = SESSION_STORES[session_id]
|
| 474 |
+
|
| 475 |
+
# Clean up session-specific RAG instance
|
| 476 |
+
if "rag_instance" in store:
|
| 477 |
+
store["rag_instance"].cleanup()
|
| 478 |
+
|
| 479 |
+
# Clean up FAISS index
|
| 480 |
+
if store.get("faiss_index"):
|
| 481 |
+
del store["faiss_index"]
|
| 482 |
+
|
| 483 |
+
# Remove session from memory
|
| 484 |
+
del SESSION_STORES[session_id]
|
| 485 |
+
|
| 486 |
+
age_minutes = (current_time - store["metadata"]["loaded_at"]).total_seconds() / 60
|
| 487 |
+
logger.info(f"Expired session {session_id[:8]} removed from memory (age: {age_minutes:.1f} minutes)")
|
| 488 |
+
|
| 489 |
+
except Exception as cleanup_error:
|
| 490 |
+
logger.error(f"Error cleaning up session {session_id[:8]}: {cleanup_error}")
|
| 491 |
+
|
| 492 |
+
# Update active session count
|
| 493 |
+
APP_STATE["active_sessions"] = len(SESSION_STORES)
|
| 494 |
|
| 495 |
if expired_sessions:
|
| 496 |
+
logger.info(f"Memory cleanup completed: {len(expired_sessions)} expired sessions removed, {len(SESSION_STORES)} sessions still active")
|
| 497 |
+
else:
|
| 498 |
+
logger.debug(f"No expired sessions found. {len(SESSION_STORES)} sessions still active in memory")
|
| 499 |
|
| 500 |
except Exception as e:
|
| 501 |
+
logger.error(f"Session cleanup error: {e}")
|
| 502 |
+
logger.error(traceback.format_exc())
|
| 503 |
|
| 504 |
async def periodic_cleanup():
|
| 505 |
+
"""Periodic cleanup of expired sessions - keeps server running"""
|
| 506 |
+
cleanup_count = 0
|
| 507 |
try:
|
| 508 |
while True:
|
| 509 |
+
cleanup_count += 1
|
| 510 |
+
logger.debug(f"Running session cleanup cycle #{cleanup_count}")
|
| 511 |
+
|
| 512 |
+
cleanup_expired_sessions()
|
| 513 |
+
|
| 514 |
+
# Sleep for cleanup interval (30 minutes)
|
| 515 |
await asyncio.sleep(CLEANUP_INTERVAL)
|
| 516 |
+
|
| 517 |
except asyncio.CancelledError:
|
| 518 |
+
logger.info(f"Session cleanup task cancelled after {cleanup_count} cycles")
|
| 519 |
raise
|
| 520 |
except Exception as e:
|
| 521 |
+
logger.error(f"Periodic cleanup error in cycle #{cleanup_count}: {e}")
|
| 522 |
+
logger.error(traceback.format_exc())
|
| 523 |
+
|
| 524 |
+
# Don't break the loop - keep trying to clean up
|
| 525 |
+
await asyncio.sleep(60) # Wait 1 minute before retrying
|
| 526 |
+
|
| 527 |
+
# Global cleanup task
|
| 528 |
+
cleanup_task = None
|
| 529 |
|
| 530 |
@asynccontextmanager
|
| 531 |
async def lifespan(app: FastAPI):
|
| 532 |
+
"""Application lifespan with comprehensive error handling"""
|
| 533 |
global cleanup_task
|
| 534 |
|
| 535 |
# Startup
|
| 536 |
+
logger.info("Starting Advanced RAG Chat Service...")
|
| 537 |
+
APP_STATE["startup_time"] = datetime.utcnow()
|
| 538 |
|
| 539 |
+
startup_success = True
|
| 540 |
+
|
| 541 |
+
# Check FAISS availability
|
| 542 |
+
if not FAISS_AVAILABLE:
|
| 543 |
+
logger.error("FAISS library not available - this is required for RAG functionality")
|
| 544 |
+
startup_success = False
|
| 545 |
+
|
| 546 |
+
# Import RAG module
|
| 547 |
+
if not safe_import_rag():
|
| 548 |
+
logger.error("RAG module import failed")
|
| 549 |
+
startup_success = False
|
| 550 |
+
|
| 551 |
+
# Connect to MongoDB (non-critical failure)
|
| 552 |
if not connect_mongodb():
|
| 553 |
+
logger.error("MongoDB connection failed - continuing with limited functionality")
|
|
|
|
| 554 |
|
| 555 |
+
# Initialize RAG system (non-critical failure for basic health checks)
|
| 556 |
+
if RAG_MODULE and FAISS_AVAILABLE:
|
| 557 |
+
if not initialize_rag():
|
| 558 |
+
logger.error("RAG initialization failed - RAG features disabled")
|
| 559 |
|
| 560 |
+
# Start cleanup task if MongoDB is available
|
| 561 |
+
if APP_STATE["mongodb_connected"]:
|
| 562 |
+
try:
|
| 563 |
+
cleanup_task = asyncio.create_task(periodic_cleanup())
|
| 564 |
+
logger.info("Background cleanup task started")
|
| 565 |
+
except Exception as e:
|
| 566 |
+
logger.error(f"Failed to start cleanup task: {e}")
|
| 567 |
|
| 568 |
+
if startup_success:
|
| 569 |
+
logger.info("Startup completed successfully")
|
| 570 |
+
else:
|
| 571 |
+
logger.warning("Startup completed with errors - some features may be disabled")
|
| 572 |
|
| 573 |
yield
|
| 574 |
|
| 575 |
# Shutdown
|
| 576 |
+
logger.info("Shutting down...")
|
| 577 |
|
| 578 |
if cleanup_task:
|
| 579 |
cleanup_task.cancel()
|
|
|
|
| 587 |
|
| 588 |
logger.info("Shutdown completed")
|
| 589 |
|
| 590 |
+
# Initialize FastAPI app
|
| 591 |
app = FastAPI(
|
| 592 |
+
title="Advanced RAG Chat Service",
|
| 593 |
+
description="Robust RAG-based chat service with comprehensive error handling",
|
| 594 |
+
version="2.0.0",
|
| 595 |
lifespan=lifespan
|
| 596 |
)
|
| 597 |
|
| 598 |
+
# CORS configuration
|
| 599 |
+
app.add_middleware(
|
| 600 |
+
CORSMiddleware,
|
| 601 |
+
allow_origins=["*"],
|
| 602 |
+
allow_credentials=True,
|
| 603 |
+
allow_methods=["*"],
|
| 604 |
+
allow_headers=["*"],
|
| 605 |
+
)
|
| 606 |
|
| 607 |
+
# Root endpoint
|
| 608 |
+
@app.get("/")
|
| 609 |
+
async def root():
|
| 610 |
+
"""Service information endpoint"""
|
| 611 |
+
uptime = (datetime.utcnow() - APP_STATE["startup_time"]).total_seconds() if APP_STATE["startup_time"] else 0
|
| 612 |
+
|
| 613 |
+
return {
|
| 614 |
+
"service": "Advanced RAG Chat Service",
|
| 615 |
+
"version": "2.0.0",
|
| 616 |
+
"status": "running",
|
| 617 |
+
"uptime_seconds": uptime,
|
| 618 |
+
"components": {
|
| 619 |
+
"mongodb": APP_STATE["mongodb_connected"],
|
| 620 |
+
"rag_system": APP_STATE["rag_ready"],
|
| 621 |
+
"faiss": FAISS_AVAILABLE
|
| 622 |
+
},
|
| 623 |
+
"active_sessions": len(SESSION_STORES),
|
| 624 |
+
"total_queries": APP_STATE["total_queries"],
|
| 625 |
+
"endpoints": {
|
| 626 |
+
"health": "GET /health",
|
| 627 |
+
"init": "POST /init/{session_id}",
|
| 628 |
+
"chat": "POST /chat/{session_id}",
|
| 629 |
+
"history": "GET /history/{session_id}",
|
| 630 |
+
"cleanup": "DELETE /session/{session_id}",
|
| 631 |
+
"status": "GET /sessions/active"
|
| 632 |
+
}
|
| 633 |
+
}
|
| 634 |
|
| 635 |
@app.get("/health", response_model=HealthResponse)
|
| 636 |
async def health_check():
|
| 637 |
+
"""Comprehensive health check"""
|
| 638 |
try:
|
| 639 |
+
# Test MongoDB connection
|
| 640 |
mongodb_connected = False
|
| 641 |
+
if DB:
|
|
|
|
|
|
|
| 642 |
try:
|
| 643 |
DB.command("ping")
|
| 644 |
mongodb_connected = True
|
|
|
|
|
|
|
|
|
|
| 645 |
except:
|
| 646 |
pass
|
| 647 |
|
| 648 |
+
# Calculate uptime
|
| 649 |
+
uptime = 0
|
| 650 |
+
if APP_STATE["startup_time"]:
|
| 651 |
+
uptime = (datetime.utcnow() - APP_STATE["startup_time"]).total_seconds()
|
| 652 |
+
|
| 653 |
+
# Memory usage
|
| 654 |
with STORE_LOCK:
|
| 655 |
memory_sessions = len(SESSION_STORES)
|
| 656 |
indexed_sessions = sum(1 for store in SESSION_STORES.values() if store["indexed"])
|
| 657 |
|
| 658 |
+
# Overall status
|
| 659 |
+
status = "healthy"
|
| 660 |
+
if not FAISS_AVAILABLE:
|
| 661 |
+
status = "degraded"
|
| 662 |
+
elif not mongodb_connected and not RAG_INITIALIZED:
|
| 663 |
+
status = "unhealthy"
|
| 664 |
+
|
| 665 |
+
last_error = APP_STATE["errors"][-1] if APP_STATE["errors"] else None
|
| 666 |
+
|
| 667 |
return HealthResponse(
|
| 668 |
+
status=status,
|
| 669 |
mongodb_connected=mongodb_connected,
|
| 670 |
rag_initialized=RAG_INITIALIZED,
|
| 671 |
+
faiss_available=FAISS_AVAILABLE,
|
| 672 |
+
active_sessions=memory_sessions,
|
| 673 |
memory_usage={
|
| 674 |
"loaded_sessions": memory_sessions,
|
| 675 |
"indexed_sessions": indexed_sessions,
|
| 676 |
+
"store_ttl_minutes": STORE_TTL // 60,
|
| 677 |
+
"cleanup_interval_minutes": CLEANUP_INTERVAL // 60
|
| 678 |
+
},
|
| 679 |
+
uptime_seconds=uptime,
|
| 680 |
+
last_error=last_error
|
| 681 |
)
|
| 682 |
+
|
| 683 |
except Exception as e:
|
| 684 |
logger.error(f"Health check failed: {e}")
|
| 685 |
return HealthResponse(
|
| 686 |
status="unhealthy",
|
| 687 |
mongodb_connected=False,
|
| 688 |
rag_initialized=False,
|
| 689 |
+
faiss_available=False,
|
| 690 |
active_sessions=0,
|
| 691 |
+
memory_usage={},
|
| 692 |
+
uptime_seconds=0,
|
| 693 |
+
last_error=str(e)
|
| 694 |
)
|
| 695 |
|
| 696 |
@app.post("/init/{session_id}", response_model=InitResponse)
|
| 697 |
async def initialize_session(session_id: str, request: InitRequest):
|
| 698 |
+
"""Initialize session with comprehensive validation"""
|
| 699 |
session_logger = create_session_logger(session_id)
|
| 700 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 701 |
try:
|
| 702 |
+
# Validate prerequisites
|
| 703 |
+
if not DB:
|
| 704 |
+
raise HTTPException(status_code=503, detail="Database not connected")
|
| 705 |
+
|
| 706 |
+
if not RAG_INITIALIZED:
|
| 707 |
+
raise HTTPException(status_code=503, detail="RAG system not initialized")
|
| 708 |
|
| 709 |
+
if not FAISS_AVAILABLE:
|
| 710 |
+
raise HTTPException(status_code=503, detail="FAISS library not available")
|
| 711 |
+
|
| 712 |
+
# Check if already initialized
|
| 713 |
+
with STORE_LOCK:
|
| 714 |
+
if session_id in SESSION_STORES and SESSION_STORES[session_id]["indexed"] and not request.force_reload:
|
| 715 |
+
store = SESSION_STORES[session_id]
|
| 716 |
+
metadata = store["metadata"]
|
| 717 |
+
session_logger.info("Session already initialized")
|
| 718 |
+
return InitResponse(
|
| 719 |
+
success=True,
|
| 720 |
+
session_id=session_id,
|
| 721 |
+
message="Session already initialized",
|
| 722 |
+
chunk_count=metadata["chunk_count"],
|
| 723 |
+
title=metadata["title"],
|
| 724 |
+
document_info=metadata["document_info"]
|
| 725 |
+
)
|
| 726 |
+
|
| 727 |
+
session_logger.info("Initializing session...")
|
| 728 |
+
|
| 729 |
+
# Load session from MongoDB
|
| 730 |
session_store = load_session_from_mongodb(session_id)
|
| 731 |
|
| 732 |
# Store in memory
|
| 733 |
with STORE_LOCK:
|
| 734 |
SESSION_STORES[session_id] = session_store
|
| 735 |
+
APP_STATE["active_sessions"] = len(SESSION_STORES)
|
| 736 |
|
| 737 |
+
# Build FAISS index
|
| 738 |
+
metadata = build_faiss_index_safely(session_id)
|
| 739 |
|
| 740 |
+
session_logger.info(f"Session initialized: {metadata['chunk_count']} chunks ready")
|
| 741 |
|
| 742 |
return InitResponse(
|
| 743 |
success=True,
|
| 744 |
session_id=session_id,
|
| 745 |
+
message=f"Session initialized successfully with {metadata['chunk_count']} chunks",
|
| 746 |
chunk_count=metadata["chunk_count"],
|
| 747 |
title=metadata["title"],
|
| 748 |
document_info=metadata["document_info"]
|
| 749 |
)
|
| 750 |
|
| 751 |
+
except HTTPException:
|
| 752 |
+
raise
|
| 753 |
except ValueError as e:
|
| 754 |
+
session_logger.error(f"Session initialization validation error: {e}")
|
| 755 |
+
return InitResponse(
|
| 756 |
+
success=False,
|
| 757 |
+
session_id=session_id,
|
| 758 |
+
message="Session initialization failed",
|
| 759 |
+
chunk_count=0,
|
| 760 |
+
title="Error",
|
| 761 |
+
error_details=str(e)
|
| 762 |
+
)
|
| 763 |
except Exception as e:
|
| 764 |
session_logger.error(f"Session initialization error: {e}")
|
| 765 |
+
session_logger.error(traceback.format_exc())
|
| 766 |
+
APP_STATE["errors"].append(f"Init failed for {session_id[:8]}: {str(e)}")
|
| 767 |
+
return InitResponse(
|
| 768 |
+
success=False,
|
| 769 |
+
session_id=session_id,
|
| 770 |
+
message="Internal server error during initialization",
|
| 771 |
+
chunk_count=0,
|
| 772 |
+
title="Error",
|
| 773 |
+
error_details="Internal server error"
|
| 774 |
+
)
|
| 775 |
|
| 776 |
@app.post("/chat/{session_id}", response_model=ChatResponse)
|
| 777 |
async def chat_with_document(session_id: str, request: ChatRequest):
|
| 778 |
+
"""Chat endpoint with comprehensive error handling"""
|
| 779 |
session_logger = create_session_logger(session_id)
|
| 780 |
start_time = time.time()
|
| 781 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 782 |
try:
|
| 783 |
+
# Validate prerequisites
|
| 784 |
+
if not DB:
|
| 785 |
+
raise HTTPException(status_code=503, detail="Database not connected")
|
| 786 |
|
| 787 |
+
if not RAG_INITIALIZED or not RAG_MODULE:
|
| 788 |
+
raise HTTPException(status_code=503, detail="RAG system not initialized")
|
| 789 |
+
|
| 790 |
+
# Validate session
|
| 791 |
with STORE_LOCK:
|
| 792 |
if session_id not in SESSION_STORES:
|
| 793 |
raise HTTPException(
|
| 794 |
+
status_code=400,
|
| 795 |
+
detail=f"Session not initialized. Call /init/{session_id} first."
|
| 796 |
)
|
| 797 |
|
| 798 |
if not SESSION_STORES[session_id]["indexed"]:
|
| 799 |
raise HTTPException(
|
| 800 |
status_code=400,
|
| 801 |
+
detail="Session not indexed properly. Try reinitializing."
|
| 802 |
)
|
| 803 |
|
| 804 |
+
session_logger.info(f"Processing query: {request.message[:100]}...")
|
|
|
|
| 805 |
|
| 806 |
+
# Query RAG system
|
| 807 |
+
try:
|
| 808 |
+
result = RAG_MODULE.query_documents(request.message, top_k=5)
|
| 809 |
+
APP_STATE["total_queries"] += 1
|
| 810 |
+
except Exception as rag_error:
|
| 811 |
+
session_logger.error(f"RAG query failed: {rag_error}")
|
| 812 |
+
result = {
|
| 813 |
+
'error': f'RAG processing failed: {str(rag_error)}',
|
| 814 |
+
'answer': 'I apologize, but I encountered an error while processing your question. Please try again or rephrase your query.',
|
| 815 |
+
'sources': [],
|
| 816 |
+
'query_analysis': {},
|
| 817 |
+
'confidence': 0.0
|
| 818 |
+
}
|
| 819 |
+
|
| 820 |
+
if 'error' in result and not result.get('answer'):
|
| 821 |
raise HTTPException(status_code=500, detail=result['error'])
|
| 822 |
|
| 823 |
answer = result.get('answer', 'Unable to generate answer.')
|
|
|
|
| 825 |
query_analysis = result.get('query_analysis', {})
|
| 826 |
confidence = result.get('confidence', 0.0)
|
| 827 |
|
| 828 |
+
# Save chat messages
|
| 829 |
+
save_chat_message_safely(session_id, "user", request.message)
|
| 830 |
+
save_chat_message_safely(session_id, "assistant", answer)
|
| 831 |
|
| 832 |
+
# Get chat history
|
| 833 |
+
chat_history = get_chat_history_safely(session_id)
|
| 834 |
|
| 835 |
processing_time = time.time() - start_time
|
| 836 |
+
session_logger.info(f"Query processed in {processing_time:.2f}s, confidence: {confidence:.1f}%")
|
| 837 |
+
|
| 838 |
+
# Format sources
|
| 839 |
+
formatted_sources = []
|
| 840 |
+
for source in sources:
|
| 841 |
+
try:
|
| 842 |
+
formatted_source = {
|
| 843 |
+
"chunk_id": source.get("chunk_id", ""),
|
| 844 |
+
"title": source.get("title", ""),
|
| 845 |
+
"section": source.get("section", ""),
|
| 846 |
+
"relevance_score": float(source.get("relevance_score", 0.0)),
|
| 847 |
+
"text_preview": source.get("excerpt", "")[:300] + ("..." if len(source.get("excerpt", "")) > 300 else ""),
|
| 848 |
+
"entities": source.get("entities", [])
|
| 849 |
+
}
|
| 850 |
+
formatted_sources.append(formatted_source)
|
| 851 |
+
except Exception as source_error:
|
| 852 |
+
session_logger.warning(f"Failed to format source: {source_error}")
|
| 853 |
|
| 854 |
return ChatResponse(
|
| 855 |
success=True,
|
|
|
|
| 865 |
except HTTPException:
|
| 866 |
raise
|
| 867 |
except Exception as e:
|
| 868 |
+
session_logger.error(f"Chat processing failed: {e}")
|
| 869 |
+
session_logger.error(traceback.format_exc())
|
| 870 |
+
APP_STATE["errors"].append(f"Chat failed for {session_id[:8]}: {str(e)}")
|
| 871 |
+
|
| 872 |
+
return ChatResponse(
|
| 873 |
+
success=False,
|
| 874 |
+
answer="I apologize, but I encountered an error while processing your question. Please try again.",
|
| 875 |
+
sources=[],
|
| 876 |
+
chat_history=get_chat_history_safely(session_id),
|
| 877 |
+
processing_time=time.time() - start_time,
|
| 878 |
+
session_id=session_id,
|
| 879 |
+
error_details="Internal server error"
|
| 880 |
+
)
|
| 881 |
|
| 882 |
@app.get("/history/{session_id}")
|
| 883 |
async def get_session_history(session_id: str):
|
| 884 |
"""Get chat history for a session"""
|
| 885 |
session_logger = create_session_logger(session_id)
|
| 886 |
|
| 887 |
+
if not DB:
|
| 888 |
raise HTTPException(status_code=503, detail="Database not connected")
|
| 889 |
|
| 890 |
try:
|
| 891 |
+
chat_history = get_chat_history_safely(session_id, limit=100)
|
| 892 |
|
| 893 |
session_logger.info(f"Retrieved {len(chat_history)} chat messages")
|
| 894 |
|
|
|
|
| 909 |
session_logger = create_session_logger(session_id)
|
| 910 |
|
| 911 |
try:
|
| 912 |
+
cleaned_up = False
|
| 913 |
+
|
| 914 |
with STORE_LOCK:
|
| 915 |
if session_id in SESSION_STORES:
|
| 916 |
+
# Clean up session-specific RAG instance
|
| 917 |
+
store = SESSION_STORES[session_id]
|
| 918 |
+
if "rag_instance" in store:
|
| 919 |
+
try:
|
| 920 |
+
# Clean up any resources in the RAG instance
|
| 921 |
+
store["rag_instance"].cleanup()
|
| 922 |
+
except:
|
| 923 |
+
pass
|
| 924 |
+
|
| 925 |
# Clean up FAISS index
|
| 926 |
+
if store.get("faiss_index"):
|
| 927 |
+
del store["faiss_index"]
|
| 928 |
+
|
| 929 |
del SESSION_STORES[session_id]
|
| 930 |
+
APP_STATE["active_sessions"] = len(SESSION_STORES)
|
| 931 |
+
cleaned_up = True
|
| 932 |
session_logger.info("Session removed from memory")
|
| 933 |
|
| 934 |
+
if not cleaned_up:
|
| 935 |
+
session_logger.info("Session not found in memory")
|
| 936 |
+
|
| 937 |
return {
|
| 938 |
"success": True,
|
| 939 |
"message": f"Session {session_id} cleaned up successfully"
|
|
|
|
| 945 |
|
| 946 |
@app.get("/sessions/active")
|
| 947 |
async def get_active_sessions():
|
| 948 |
+
"""Get information about active sessions in memory with TTL info"""
|
| 949 |
try:
|
| 950 |
+
current_time = datetime.utcnow()
|
| 951 |
+
|
| 952 |
with STORE_LOCK:
|
| 953 |
active_sessions = []
|
| 954 |
for session_id, store in SESSION_STORES.items():
|
| 955 |
metadata = store["metadata"]
|
| 956 |
+
loaded_at = metadata["loaded_at"]
|
| 957 |
+
age_seconds = (current_time - loaded_at).total_seconds()
|
| 958 |
+
remaining_seconds = STORE_TTL - age_seconds
|
| 959 |
+
|
| 960 |
active_sessions.append({
|
| 961 |
"session_id": session_id,
|
| 962 |
"title": metadata["title"],
|
| 963 |
"chunk_count": metadata["chunk_count"],
|
| 964 |
"indexed": store["indexed"],
|
| 965 |
+
"has_rag_instance": "rag_instance" in store,
|
| 966 |
+
"loaded_at": loaded_at.isoformat(),
|
| 967 |
+
"age_minutes": age_seconds / 60,
|
| 968 |
+
"remaining_minutes": max(0, remaining_seconds / 60),
|
| 969 |
+
"expires_at": (loaded_at + timedelta(seconds=STORE_TTL)).isoformat(),
|
| 970 |
+
"will_expire_soon": remaining_seconds < 300, # Less than 5 minutes
|
| 971 |
+
"failed_chunks": metadata.get("failed_chunks", 0)
|
| 972 |
})
|
| 973 |
+
|
| 974 |
+
# Sort by remaining time (expiring soon first)
|
| 975 |
+
active_sessions.sort(key=lambda x: x["remaining_minutes"])
|
| 976 |
|
| 977 |
return {
|
| 978 |
"success": True,
|
| 979 |
"active_sessions": active_sessions,
|
| 980 |
+
"total_sessions": len(active_sessions),
|
| 981 |
+
"session_ttl_minutes": STORE_TTL / 60,
|
| 982 |
+
"cleanup_interval_minutes": CLEANUP_INTERVAL / 60,
|
| 983 |
+
"next_cleanup_in_minutes": CLEANUP_INTERVAL / 60 # Approximate
|
| 984 |
}
|
| 985 |
|
| 986 |
except Exception as e:
|
| 987 |
logger.error(f"Failed to get active sessions: {e}")
|
| 988 |
raise HTTPException(status_code=500, detail=f"Failed to get active sessions: {str(e)}")
|
| 989 |
|
| 990 |
+
@app.post("/sessions/{session_id}/extend")
|
| 991 |
+
async def extend_session_ttl(session_id: str):
|
| 992 |
+
"""Extend a session's TTL by resetting its load time (keep it alive longer)"""
|
| 993 |
+
session_logger = create_session_logger(session_id)
|
| 994 |
+
|
| 995 |
+
try:
|
| 996 |
+
with STORE_LOCK:
|
| 997 |
+
if session_id not in SESSION_STORES:
|
| 998 |
+
raise HTTPException(status_code=404, detail="Session not found in memory")
|
| 999 |
+
|
| 1000 |
+
# Reset the loaded_at timestamp to extend TTL
|
| 1001 |
+
old_loaded_at = SESSION_STORES[session_id]["metadata"]["loaded_at"]
|
| 1002 |
+
SESSION_STORES[session_id]["metadata"]["loaded_at"] = datetime.utcnow()
|
| 1003 |
+
|
| 1004 |
+
session_logger.info(f"Session TTL extended (was loaded at: {old_loaded_at.isoformat()})")
|
| 1005 |
+
|
| 1006 |
+
return {
|
| 1007 |
+
"success": True,
|
| 1008 |
+
"message": f"Session {session_id} TTL extended for another {STORE_TTL//60} minutes",
|
| 1009 |
+
"new_expiry": (datetime.utcnow() + timedelta(seconds=STORE_TTL)).isoformat()
|
| 1010 |
+
}
|
| 1011 |
+
|
| 1012 |
+
except HTTPException:
|
| 1013 |
+
raise
|
| 1014 |
+
except Exception as e:
|
| 1015 |
+
session_logger.error(f"Failed to extend session TTL: {e}")
|
| 1016 |
+
raise HTTPException(status_code=500, detail=f"Failed to extend session TTL: {str(e)}")
|
| 1017 |
+
|
| 1018 |
+
@app.post("/cleanup/run")
|
| 1019 |
+
async def manual_cleanup():
|
| 1020 |
+
"""Manually trigger cleanup of expired sessions"""
|
| 1021 |
+
try:
|
| 1022 |
+
before_count = len(SESSION_STORES)
|
| 1023 |
+
cleanup_expired_sessions()
|
| 1024 |
+
after_count = len(SESSION_STORES)
|
| 1025 |
+
cleaned_count = before_count - after_count
|
| 1026 |
+
|
| 1027 |
+
return {
|
| 1028 |
+
"success": True,
|
| 1029 |
+
"message": f"Manual cleanup completed",
|
| 1030 |
+
"sessions_before": before_count,
|
| 1031 |
+
"sessions_after": after_count,
|
| 1032 |
+
"sessions_cleaned": cleaned_count
|
| 1033 |
+
}
|
| 1034 |
+
|
| 1035 |
+
except Exception as e:
|
| 1036 |
+
logger.error(f"Manual cleanup failed: {e}")
|
| 1037 |
+
raise HTTPException(status_code=500, detail=f"Manual cleanup failed: {str(e)}")
|
| 1038 |
+
|
| 1039 |
@app.get("/rag/status")
|
| 1040 |
async def get_rag_status():
|
| 1041 |
+
"""Get RAG system status"""
|
| 1042 |
try:
|
| 1043 |
return {
|
| 1044 |
"success": True,
|
| 1045 |
"rag_initialized": RAG_INITIALIZED,
|
| 1046 |
+
"faiss_available": FAISS_AVAILABLE,
|
| 1047 |
+
"concurrency": {
|
| 1048 |
+
"session_isolated_rag": True,
|
| 1049 |
+
"async_processing": True,
|
| 1050 |
+
"thread_pool_execution": True,
|
| 1051 |
+
"no_global_state_conflicts": True
|
| 1052 |
+
},
|
| 1053 |
"optimization": {
|
| 1054 |
+
"precomputed_embeddings": True,
|
|
|
|
| 1055 |
"persistent_faiss_index": True,
|
| 1056 |
+
"mongodb_persistence": True,
|
| 1057 |
+
"memory_cleanup": True
|
| 1058 |
},
|
| 1059 |
"features": {
|
| 1060 |
"multi_stage_retrieval": True,
|
| 1061 |
+
"dense_retrieval": "FAISS + Session-Isolated Embeddings",
|
| 1062 |
+
"sparse_retrieval": "BM25 per Session",
|
| 1063 |
+
"entity_based_retrieval": "Legal NER + SpaCy",
|
| 1064 |
+
"graph_based_retrieval": "Legal Concept Graph per Session",
|
| 1065 |
"query_analysis": "Legal Intent Classification",
|
| 1066 |
"answer_generation": "Groq LLM with IRAC Method"
|
| 1067 |
},
|
| 1068 |
+
"active_sessions": len(SESSION_STORES),
|
| 1069 |
+
"total_queries_processed": APP_STATE["total_queries"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1070 |
}
|
| 1071 |
|
| 1072 |
except Exception as e:
|
|
|
|
| 1076 |
if __name__ == "__main__":
|
| 1077 |
import uvicorn
|
| 1078 |
port = int(os.getenv("PORT", 7861))
|
| 1079 |
+
logger.info(f"Starting server on port {port}")
|
| 1080 |
uvicorn.run(app, host="0.0.0.0", port=port)
|