Kartik Narang
commited on
Commit
·
fc6a53f
1
Parent(s):
da63606
first commit
Browse files- app.py +678 -0
- rag.py +593 -0
- requirements.txt +23 -0
app.py
ADDED
|
@@ -0,0 +1,678 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
import pymongo
|
| 5 |
+
import os
|
| 6 |
+
import numpy as np
|
| 7 |
+
from datetime import datetime, timedelta
|
| 8 |
+
import logging
|
| 9 |
+
from typing import Dict, Any, Optional, List
|
| 10 |
+
import base64
|
| 11 |
+
import json
|
| 12 |
+
import threading
|
| 13 |
+
import time
|
| 14 |
+
from collections import defaultdict
|
| 15 |
+
import faiss
|
| 16 |
+
|
| 17 |
+
# Import our simplified advanced RAG system
|
| 18 |
+
import rag
|
| 19 |
+
|
| 20 |
+
# Configure logging
|
| 21 |
+
logging.basicConfig(
|
| 22 |
+
level=logging.INFO,
|
| 23 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 24 |
+
)
|
| 25 |
+
logger = logging.getLogger(__name__)
|
| 26 |
+
|
| 27 |
+
# Initialize FastAPI app
|
| 28 |
+
app = FastAPI(title="Advanced RAG Chat Service", version="1.0.0")
|
| 29 |
+
|
| 30 |
+
# Add CORS middleware
|
| 31 |
+
app.add_middleware(
|
| 32 |
+
CORSMiddleware,
|
| 33 |
+
allow_origins=["*"], # Configure this properly in production
|
| 34 |
+
allow_credentials=True,
|
| 35 |
+
allow_methods=["*"],
|
| 36 |
+
allow_headers=["*"],
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Global variables
|
| 40 |
+
MONGO_CLIENT = None
|
| 41 |
+
DB = None
|
| 42 |
+
RAG_INITIALIZED = False
|
| 43 |
+
|
| 44 |
+
# In-memory session stores
|
| 45 |
+
# Format: {session_id: {"chunks": [...], "faiss_index": faiss.Index, "indexed": bool, "metadata": {...}}}
|
| 46 |
+
SESSION_STORES = {}
|
| 47 |
+
STORE_LOCK = threading.RLock()
|
| 48 |
+
CLEANUP_INTERVAL = 3600 # 1 hour cleanup interval
|
| 49 |
+
STORE_TTL = 24 * 3600 # 24 hours TTL for in-memory stores
|
| 50 |
+
|
| 51 |
+
# Request/Response models
|
| 52 |
+
class ChatRequest(BaseModel):
|
| 53 |
+
message: str
|
| 54 |
+
|
| 55 |
+
class ChatResponse(BaseModel):
|
| 56 |
+
success: bool
|
| 57 |
+
answer: str
|
| 58 |
+
sources: List[Dict[str, Any]]
|
| 59 |
+
chat_history: List[Dict[str, Any]]
|
| 60 |
+
processing_time: float
|
| 61 |
+
session_id: str
|
| 62 |
+
query_analysis: Optional[Dict[str, Any]] = None
|
| 63 |
+
confidence: Optional[float] = None
|
| 64 |
+
|
| 65 |
+
class InitRequest(BaseModel):
|
| 66 |
+
pass
|
| 67 |
+
|
| 68 |
+
class InitResponse(BaseModel):
|
| 69 |
+
success: bool
|
| 70 |
+
session_id: str
|
| 71 |
+
message: str
|
| 72 |
+
chunk_count: int
|
| 73 |
+
title: str
|
| 74 |
+
document_info: Optional[Dict[str, Any]] = None
|
| 75 |
+
|
| 76 |
+
class HealthResponse(BaseModel):
|
| 77 |
+
status: str
|
| 78 |
+
mongodb_connected: bool
|
| 79 |
+
rag_initialized: bool
|
| 80 |
+
active_sessions: int
|
| 81 |
+
memory_usage: Dict[str, Any]
|
| 82 |
+
|
| 83 |
+
def create_session_logger(session_id: str):
|
| 84 |
+
"""Create a logger with session context"""
|
| 85 |
+
return logging.LoggerAdapter(logger, {'session_id': session_id})
|
| 86 |
+
|
| 87 |
+
def connect_mongodb():
|
| 88 |
+
"""Initialize MongoDB connection"""
|
| 89 |
+
global MONGO_CLIENT, DB
|
| 90 |
+
try:
|
| 91 |
+
mongodb_url = os.getenv("MONGODB_URL", "mongodb://localhost:27017/")
|
| 92 |
+
MONGO_CLIENT = pymongo.MongoClient(mongodb_url)
|
| 93 |
+
DB = MONGO_CLIENT["legal_rag_db"]
|
| 94 |
+
|
| 95 |
+
# Test connection
|
| 96 |
+
DB.command("ping")
|
| 97 |
+
|
| 98 |
+
# Create indexes for chats collection
|
| 99 |
+
logger.info("Creating MongoDB indexes for chats...")
|
| 100 |
+
DB.chats.create_index("session_id")
|
| 101 |
+
DB.chats.create_index("created_at", expireAfterSeconds=24*60*60) # 24 hour TTL
|
| 102 |
+
DB.chats.create_index([("session_id", 1), ("created_at", 1)]) # Compound index
|
| 103 |
+
|
| 104 |
+
logger.info("MongoDB connected successfully")
|
| 105 |
+
return True
|
| 106 |
+
except Exception as e:
|
| 107 |
+
logger.error(f"MongoDB connection failed: {e}")
|
| 108 |
+
return False
|
| 109 |
+
|
| 110 |
+
def initialize_rag():
|
| 111 |
+
"""Initialize RAG system"""
|
| 112 |
+
global RAG_INITIALIZED
|
| 113 |
+
try:
|
| 114 |
+
model_id = os.getenv("EMBEDDING_MODEL_ID", "sentence-transformers/all-MiniLM-L6-v2")
|
| 115 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 116 |
+
|
| 117 |
+
logger.info(f"Initializing RAG system with model: {model_id}")
|
| 118 |
+
rag.initialize_models(model_id, groq_api_key)
|
| 119 |
+
|
| 120 |
+
RAG_INITIALIZED = True
|
| 121 |
+
logger.info("RAG system initialized successfully")
|
| 122 |
+
return True
|
| 123 |
+
except Exception as e:
|
| 124 |
+
logger.error(f"RAG initialization failed: {e}")
|
| 125 |
+
return False
|
| 126 |
+
|
| 127 |
+
def decode_embedding_from_storage(embedding_list: List[float]) -> np.ndarray:
|
| 128 |
+
"""Convert embedding from MongoDB list back to numpy array"""
|
| 129 |
+
try:
|
| 130 |
+
return np.array(embedding_list, dtype=np.float32)
|
| 131 |
+
except Exception as e:
|
| 132 |
+
logger.error(f"Failed to decode embedding: {e}")
|
| 133 |
+
return np.array([])
|
| 134 |
+
|
| 135 |
+
def load_session_from_mongodb(session_id: str) -> Dict[str, Any]:
|
| 136 |
+
"""Load session data from MongoDB with precomputed embeddings"""
|
| 137 |
+
session_logger = create_session_logger(session_id)
|
| 138 |
+
|
| 139 |
+
try:
|
| 140 |
+
# Get session metadata
|
| 141 |
+
session_doc = DB.sessions.find_one({"session_id": session_id})
|
| 142 |
+
if not session_doc:
|
| 143 |
+
raise ValueError(f"Session {session_id} not found")
|
| 144 |
+
|
| 145 |
+
if session_doc.get("status") != "completed":
|
| 146 |
+
raise ValueError(f"Session {session_id} not completed yet (status: {session_doc.get('status')})")
|
| 147 |
+
|
| 148 |
+
session_logger.info("Loading session chunks with precomputed embeddings from MongoDB")
|
| 149 |
+
|
| 150 |
+
# Get all chunks for this session with embeddings
|
| 151 |
+
chunks_cursor = DB.chunks.find({"session_id": session_id}).sort("created_at", 1)
|
| 152 |
+
chunks_list = list(chunks_cursor)
|
| 153 |
+
|
| 154 |
+
if not chunks_list:
|
| 155 |
+
raise ValueError(f"No chunks found for session {session_id}")
|
| 156 |
+
|
| 157 |
+
session_logger.info(f"Found {len(chunks_list)} chunks with embeddings")
|
| 158 |
+
|
| 159 |
+
# Convert MongoDB chunks to format needed by RAG system
|
| 160 |
+
processed_chunks = []
|
| 161 |
+
embeddings_matrix = []
|
| 162 |
+
|
| 163 |
+
for i, chunk_doc in enumerate(chunks_list):
|
| 164 |
+
# Decode the precomputed embedding
|
| 165 |
+
embedding_list = chunk_doc.get('embedding', [])
|
| 166 |
+
if not embedding_list:
|
| 167 |
+
session_logger.warning(f"Chunk {chunk_doc.get('chunk_id', i)} missing embedding")
|
| 168 |
+
continue
|
| 169 |
+
|
| 170 |
+
embedding = decode_embedding_from_storage(embedding_list)
|
| 171 |
+
if embedding.size == 0:
|
| 172 |
+
session_logger.warning(f"Failed to decode embedding for chunk {chunk_doc.get('chunk_id', i)}")
|
| 173 |
+
continue
|
| 174 |
+
|
| 175 |
+
# Format chunk for RAG system
|
| 176 |
+
processed_chunk = {
|
| 177 |
+
'id': chunk_doc.get('chunk_id', f'chunk_{i}'),
|
| 178 |
+
'text': chunk_doc['text'],
|
| 179 |
+
'title': chunk_doc.get('title', session_doc.get('title', 'Document')),
|
| 180 |
+
'section_type': chunk_doc.get('section_type', 'content'),
|
| 181 |
+
'importance_score': chunk_doc.get('importance_score', 1.0),
|
| 182 |
+
'entities': chunk_doc.get('entities', []),
|
| 183 |
+
'embedding': embedding # Precomputed embedding as numpy array
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
processed_chunks.append(processed_chunk)
|
| 187 |
+
embeddings_matrix.append(embedding)
|
| 188 |
+
|
| 189 |
+
if not processed_chunks:
|
| 190 |
+
raise ValueError(f"No valid chunks with embeddings found for session {session_id}")
|
| 191 |
+
|
| 192 |
+
# Stack embeddings for FAISS index
|
| 193 |
+
embeddings_matrix = np.vstack(embeddings_matrix).astype('float32')
|
| 194 |
+
|
| 195 |
+
session_store = {
|
| 196 |
+
"chunks": processed_chunks,
|
| 197 |
+
"embeddings_matrix": embeddings_matrix,
|
| 198 |
+
"faiss_index": None, # Will be built in indexing step
|
| 199 |
+
"indexed": False,
|
| 200 |
+
"metadata": {
|
| 201 |
+
"session_id": session_id,
|
| 202 |
+
"title": session_doc.get("title", "Document"),
|
| 203 |
+
"chunk_count": len(processed_chunks),
|
| 204 |
+
"loaded_at": datetime.utcnow(),
|
| 205 |
+
"document_info": {
|
| 206 |
+
"filename": session_doc.get("filename", "Unknown"),
|
| 207 |
+
"text_length": session_doc.get("text_length", 0),
|
| 208 |
+
"word_count": session_doc.get("word_count", 0),
|
| 209 |
+
"file_size": session_doc.get("file_size", 0),
|
| 210 |
+
"processing_completed_at": session_doc.get("processing_completed_at")
|
| 211 |
+
}
|
| 212 |
+
}
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
session_logger.info(f"Loaded {len(processed_chunks)} chunks with precomputed embeddings")
|
| 216 |
+
return session_store
|
| 217 |
+
|
| 218 |
+
except Exception as e:
|
| 219 |
+
session_logger.error(f"Failed to load session from MongoDB: {e}")
|
| 220 |
+
raise
|
| 221 |
+
|
| 222 |
+
def build_faiss_index_from_embeddings(session_id: str) -> Dict[str, Any]:
|
| 223 |
+
"""Build FAISS index from precomputed embeddings"""
|
| 224 |
+
session_logger = create_session_logger(session_id)
|
| 225 |
+
|
| 226 |
+
with STORE_LOCK:
|
| 227 |
+
if session_id not in SESSION_STORES:
|
| 228 |
+
raise ValueError(f"Session {session_id} not loaded")
|
| 229 |
+
|
| 230 |
+
store = SESSION_STORES[session_id]
|
| 231 |
+
if store["indexed"]:
|
| 232 |
+
session_logger.info("Session already indexed")
|
| 233 |
+
return store["metadata"]
|
| 234 |
+
|
| 235 |
+
chunks = store["chunks"]
|
| 236 |
+
embeddings_matrix = store["embeddings_matrix"]
|
| 237 |
+
|
| 238 |
+
try:
|
| 239 |
+
session_logger.info(f"Building FAISS index from {len(chunks)} precomputed embeddings...")
|
| 240 |
+
|
| 241 |
+
# Create FAISS index (Inner Product for normalized embeddings)
|
| 242 |
+
dimension = embeddings_matrix.shape[1]
|
| 243 |
+
faiss_index = faiss.IndexFlatIP(dimension)
|
| 244 |
+
|
| 245 |
+
# Add embeddings to FAISS index
|
| 246 |
+
faiss_index.add(embeddings_matrix)
|
| 247 |
+
|
| 248 |
+
# Set global RAG data for this session
|
| 249 |
+
rag.CHUNKS_DATA = chunks
|
| 250 |
+
rag.DENSE_INDEX = faiss_index
|
| 251 |
+
|
| 252 |
+
# Build other indices (BM25, concept graph, etc.) using precomputed chunks
|
| 253 |
+
session_logger.info("Building additional retrieval indices...")
|
| 254 |
+
|
| 255 |
+
# BM25 index for sparse retrieval
|
| 256 |
+
tokenized_corpus = [chunk['text'].lower().split() for chunk in chunks]
|
| 257 |
+
rag.BM25_INDEX = rag.BM25Okapi(tokenized_corpus)
|
| 258 |
+
|
| 259 |
+
# ColBERT-style token index
|
| 260 |
+
rag.TOKEN_TO_CHUNKS = defaultdict(set)
|
| 261 |
+
for i, chunk in enumerate(chunks):
|
| 262 |
+
tokens = chunk['text'].lower().split()
|
| 263 |
+
for token in tokens:
|
| 264 |
+
rag.TOKEN_TO_CHUNKS[token].add(i)
|
| 265 |
+
|
| 266 |
+
# Legal concept graph
|
| 267 |
+
import networkx as nx
|
| 268 |
+
rag.CONCEPT_GRAPH = nx.Graph()
|
| 269 |
+
for i, chunk in enumerate(chunks):
|
| 270 |
+
rag.CONCEPT_GRAPH.add_node(i, text=chunk['text'][:200], importance=chunk['importance_score'])
|
| 271 |
+
|
| 272 |
+
# Add edges between chunks with shared entities
|
| 273 |
+
for j, other_chunk in enumerate(chunks[i+1:], i+1):
|
| 274 |
+
shared_entities = set(e['text'] for e in chunk['entities']) & \
|
| 275 |
+
set(e['text'] for e in other_chunk['entities'])
|
| 276 |
+
if shared_entities:
|
| 277 |
+
rag.CONCEPT_GRAPH.add_edge(i, j, weight=len(shared_entities))
|
| 278 |
+
|
| 279 |
+
# Mark as indexed and store FAISS index
|
| 280 |
+
with STORE_LOCK:
|
| 281 |
+
SESSION_STORES[session_id]["faiss_index"] = faiss_index
|
| 282 |
+
SESSION_STORES[session_id]["indexed"] = True
|
| 283 |
+
|
| 284 |
+
session_logger.info(f"FAISS index built successfully from precomputed embeddings: {len(chunks)} chunks indexed")
|
| 285 |
+
return SESSION_STORES[session_id]["metadata"]
|
| 286 |
+
|
| 287 |
+
except Exception as e:
|
| 288 |
+
session_logger.error(f"Failed to build FAISS index from embeddings: {e}")
|
| 289 |
+
raise
|
| 290 |
+
|
| 291 |
+
def save_chat_message(session_id: str, role: str, message: str):
|
| 292 |
+
"""Save chat message to MongoDB"""
|
| 293 |
+
try:
|
| 294 |
+
chat_doc = {
|
| 295 |
+
"session_id": session_id,
|
| 296 |
+
"role": role,
|
| 297 |
+
"message": message,
|
| 298 |
+
"created_at": datetime.utcnow()
|
| 299 |
+
}
|
| 300 |
+
DB.chats.insert_one(chat_doc)
|
| 301 |
+
except Exception as e:
|
| 302 |
+
logger.error(f"Failed to save chat message for session {session_id}: {e}")
|
| 303 |
+
|
| 304 |
+
def get_chat_history(session_id: str, limit: int = 50) -> List[Dict[str, Any]]:
|
| 305 |
+
"""Get chat history for a session"""
|
| 306 |
+
try:
|
| 307 |
+
chats_cursor = DB.chats.find(
|
| 308 |
+
{"session_id": session_id}
|
| 309 |
+
).sort("created_at", 1).limit(limit)
|
| 310 |
+
|
| 311 |
+
chat_history = []
|
| 312 |
+
for chat_doc in chats_cursor:
|
| 313 |
+
chat_history.append({
|
| 314 |
+
"role": chat_doc["role"],
|
| 315 |
+
"message": chat_doc["message"],
|
| 316 |
+
"timestamp": chat_doc["created_at"].isoformat()
|
| 317 |
+
})
|
| 318 |
+
|
| 319 |
+
return chat_history
|
| 320 |
+
|
| 321 |
+
except Exception as e:
|
| 322 |
+
logger.error(f"Failed to get chat history for session {session_id}: {e}")
|
| 323 |
+
return []
|
| 324 |
+
|
| 325 |
+
def cleanup_old_stores():
|
| 326 |
+
"""Background cleanup of old in-memory stores"""
|
| 327 |
+
while True:
|
| 328 |
+
try:
|
| 329 |
+
current_time = datetime.utcnow()
|
| 330 |
+
expired_sessions = []
|
| 331 |
+
|
| 332 |
+
with STORE_LOCK:
|
| 333 |
+
for session_id, store in SESSION_STORES.items():
|
| 334 |
+
loaded_at = store["metadata"]["loaded_at"]
|
| 335 |
+
if (current_time - loaded_at).total_seconds() > STORE_TTL:
|
| 336 |
+
expired_sessions.append(session_id)
|
| 337 |
+
|
| 338 |
+
for session_id in expired_sessions:
|
| 339 |
+
# Clean up FAISS index and other resources
|
| 340 |
+
if SESSION_STORES[session_id].get("faiss_index"):
|
| 341 |
+
del SESSION_STORES[session_id]["faiss_index"]
|
| 342 |
+
del SESSION_STORES[session_id]
|
| 343 |
+
logger.info(f"Cleaned up expired store for session: {session_id}")
|
| 344 |
+
|
| 345 |
+
if expired_sessions:
|
| 346 |
+
logger.info(f"Cleaned up {len(expired_sessions)} expired session stores")
|
| 347 |
+
|
| 348 |
+
except Exception as e:
|
| 349 |
+
logger.error(f"Cleanup error: {e}")
|
| 350 |
+
|
| 351 |
+
time.sleep(CLEANUP_INTERVAL)
|
| 352 |
+
|
| 353 |
+
@app.on_event("startup")
|
| 354 |
+
async def startup_event():
|
| 355 |
+
"""Initialize connections on startup"""
|
| 356 |
+
logger.info("Starting up Advanced RAG Chat Service...")
|
| 357 |
+
|
| 358 |
+
# Connect to MongoDB
|
| 359 |
+
if not connect_mongodb():
|
| 360 |
+
logger.error("Failed to connect to MongoDB")
|
| 361 |
+
raise Exception("MongoDB connection failed")
|
| 362 |
+
|
| 363 |
+
# Initialize RAG system
|
| 364 |
+
if not initialize_rag():
|
| 365 |
+
logger.error("Failed to initialize RAG system")
|
| 366 |
+
raise Exception("RAG initialization failed")
|
| 367 |
+
|
| 368 |
+
# Start background cleanup thread
|
| 369 |
+
cleanup_thread = threading.Thread(target=cleanup_old_stores, daemon=True)
|
| 370 |
+
cleanup_thread.start()
|
| 371 |
+
logger.info("Background cleanup thread started")
|
| 372 |
+
|
| 373 |
+
logger.info("Startup completed successfully")
|
| 374 |
+
|
| 375 |
+
@app.get("/health", response_model=HealthResponse)
|
| 376 |
+
async def health_check():
|
| 377 |
+
"""Health check endpoint"""
|
| 378 |
+
try:
|
| 379 |
+
# Check MongoDB connection
|
| 380 |
+
mongodb_connected = False
|
| 381 |
+
active_sessions = 0
|
| 382 |
+
|
| 383 |
+
if DB is not None:
|
| 384 |
+
try:
|
| 385 |
+
DB.command("ping")
|
| 386 |
+
mongodb_connected = True
|
| 387 |
+
# Count sessions with recent chats
|
| 388 |
+
one_hour_ago = datetime.utcnow() - timedelta(hours=1)
|
| 389 |
+
active_sessions = len(DB.chats.distinct("session_id", {"created_at": {"$gte": one_hour_ago}}))
|
| 390 |
+
except:
|
| 391 |
+
pass
|
| 392 |
+
|
| 393 |
+
# Memory usage info
|
| 394 |
+
with STORE_LOCK:
|
| 395 |
+
memory_sessions = len(SESSION_STORES)
|
| 396 |
+
indexed_sessions = sum(1 for store in SESSION_STORES.values() if store["indexed"])
|
| 397 |
+
|
| 398 |
+
return HealthResponse(
|
| 399 |
+
status="healthy" if mongodb_connected and RAG_INITIALIZED else "unhealthy",
|
| 400 |
+
mongodb_connected=mongodb_connected,
|
| 401 |
+
rag_initialized=RAG_INITIALIZED,
|
| 402 |
+
active_sessions=active_sessions,
|
| 403 |
+
memory_usage={
|
| 404 |
+
"loaded_sessions": memory_sessions,
|
| 405 |
+
"indexed_sessions": indexed_sessions,
|
| 406 |
+
"store_ttl_hours": STORE_TTL / 3600
|
| 407 |
+
}
|
| 408 |
+
)
|
| 409 |
+
except Exception as e:
|
| 410 |
+
logger.error(f"Health check failed: {e}")
|
| 411 |
+
return HealthResponse(
|
| 412 |
+
status="unhealthy",
|
| 413 |
+
mongodb_connected=False,
|
| 414 |
+
rag_initialized=False,
|
| 415 |
+
active_sessions=0,
|
| 416 |
+
memory_usage={}
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
@app.post("/init/{session_id}", response_model=InitResponse)
|
| 420 |
+
async def initialize_session(session_id: str, request: InitRequest):
|
| 421 |
+
"""Initialize RAG context for a session using precomputed embeddings"""
|
| 422 |
+
session_logger = create_session_logger(session_id)
|
| 423 |
+
|
| 424 |
+
if DB is None:
|
| 425 |
+
raise HTTPException(status_code=503, detail="Database not connected")
|
| 426 |
+
|
| 427 |
+
if not RAG_INITIALIZED:
|
| 428 |
+
raise HTTPException(status_code=503, detail="RAG system not initialized")
|
| 429 |
+
|
| 430 |
+
# Check if already loaded and indexed
|
| 431 |
+
with STORE_LOCK:
|
| 432 |
+
if session_id in SESSION_STORES and SESSION_STORES[session_id]["indexed"]:
|
| 433 |
+
store = SESSION_STORES[session_id]
|
| 434 |
+
metadata = store["metadata"]
|
| 435 |
+
session_logger.info("Session already initialized and indexed with precomputed embeddings")
|
| 436 |
+
return InitResponse(
|
| 437 |
+
success=True,
|
| 438 |
+
session_id=session_id,
|
| 439 |
+
message="Session already initialized with precomputed embeddings",
|
| 440 |
+
chunk_count=metadata["chunk_count"],
|
| 441 |
+
title=metadata["title"],
|
| 442 |
+
document_info=metadata["document_info"]
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
try:
|
| 446 |
+
session_logger.info("Initializing session with precomputed embeddings from MongoDB")
|
| 447 |
+
|
| 448 |
+
# Load session data with precomputed embeddings from MongoDB
|
| 449 |
+
session_store = load_session_from_mongodb(session_id)
|
| 450 |
+
|
| 451 |
+
# Store in memory
|
| 452 |
+
with STORE_LOCK:
|
| 453 |
+
SESSION_STORES[session_id] = session_store
|
| 454 |
+
|
| 455 |
+
# Build FAISS index from precomputed embeddings (no re-embedding!)
|
| 456 |
+
metadata = build_faiss_index_from_embeddings(session_id)
|
| 457 |
+
|
| 458 |
+
session_logger.info(f"Session initialized with precomputed embeddings: {metadata['chunk_count']} chunks indexed")
|
| 459 |
+
|
| 460 |
+
return InitResponse(
|
| 461 |
+
success=True,
|
| 462 |
+
session_id=session_id,
|
| 463 |
+
message=f"Session initialized with precomputed embeddings: {metadata['chunk_count']} chunks ready for advanced RAG",
|
| 464 |
+
chunk_count=metadata["chunk_count"],
|
| 465 |
+
title=metadata["title"],
|
| 466 |
+
document_info=metadata["document_info"]
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
except ValueError as e:
|
| 470 |
+
session_logger.error(f"Session initialization failed: {e}")
|
| 471 |
+
raise HTTPException(status_code=404, detail=str(e))
|
| 472 |
+
except Exception as e:
|
| 473 |
+
session_logger.error(f"Session initialization error: {e}")
|
| 474 |
+
raise HTTPException(status_code=500, detail=f"Failed to initialize session: {str(e)}")
|
| 475 |
+
|
| 476 |
+
@app.post("/chat/{session_id}", response_model=ChatResponse)
|
| 477 |
+
async def chat_with_document(session_id: str, request: ChatRequest):
|
| 478 |
+
"""Handle chat query with advanced RAG using precomputed embeddings"""
|
| 479 |
+
session_logger = create_session_logger(session_id)
|
| 480 |
+
start_time = time.time()
|
| 481 |
+
|
| 482 |
+
if DB is None:
|
| 483 |
+
raise HTTPException(status_code=503, detail="Database not connected")
|
| 484 |
+
|
| 485 |
+
if not RAG_INITIALIZED:
|
| 486 |
+
raise HTTPException(status_code=503, detail="RAG system not initialized")
|
| 487 |
+
|
| 488 |
+
# Validate request
|
| 489 |
+
if not request.message.strip():
|
| 490 |
+
raise HTTPException(status_code=400, detail="Empty message provided")
|
| 491 |
+
|
| 492 |
+
try:
|
| 493 |
+
session_logger.info(f"Processing advanced RAG query: {request.message[:100]}...")
|
| 494 |
+
|
| 495 |
+
# Check if session is initialized and indexed
|
| 496 |
+
with STORE_LOCK:
|
| 497 |
+
if session_id not in SESSION_STORES:
|
| 498 |
+
raise HTTPException(
|
| 499 |
+
status_code=400,
|
| 500 |
+
detail=f"Session {session_id} not initialized. Call /init/{session_id} first."
|
| 501 |
+
)
|
| 502 |
+
|
| 503 |
+
if not SESSION_STORES[session_id]["indexed"]:
|
| 504 |
+
raise HTTPException(
|
| 505 |
+
status_code=400,
|
| 506 |
+
detail=f"Session {session_id} not indexed. Call /init/{session_id} first."
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
# Query using advanced RAG system (now using precomputed embeddings)
|
| 510 |
+
result = rag.query_documents(request.message, top_k=5)
|
| 511 |
+
|
| 512 |
+
if 'error' in result:
|
| 513 |
+
raise HTTPException(status_code=500, detail=result['error'])
|
| 514 |
+
|
| 515 |
+
answer = result.get('answer', 'Unable to generate answer.')
|
| 516 |
+
sources = result.get('sources', [])
|
| 517 |
+
query_analysis = result.get('query_analysis', {})
|
| 518 |
+
confidence = result.get('confidence', 0.0)
|
| 519 |
+
|
| 520 |
+
# Save chat messages to MongoDB for persistence
|
| 521 |
+
save_chat_message(session_id, "user", request.message)
|
| 522 |
+
save_chat_message(session_id, "assistant", answer)
|
| 523 |
+
|
| 524 |
+
# Get updated chat history
|
| 525 |
+
chat_history = get_chat_history(session_id)
|
| 526 |
+
|
| 527 |
+
processing_time = time.time() - start_time
|
| 528 |
+
session_logger.info(f"Advanced RAG query processed in {processing_time:.2f}s with confidence {confidence:.1f}% using precomputed embeddings")
|
| 529 |
+
|
| 530 |
+
# Prepare sources for response
|
| 531 |
+
formatted_sources = [
|
| 532 |
+
{
|
| 533 |
+
"chunk_id": source.get("chunk_id", ""),
|
| 534 |
+
"title": source.get("title", ""),
|
| 535 |
+
"section": source.get("section", ""),
|
| 536 |
+
"relevance_score": source.get("relevance_score", 0.0),
|
| 537 |
+
"text_preview": source.get("excerpt", "")[:300] + "..." if len(source.get("excerpt", "")) > 300 else source.get("excerpt", ""),
|
| 538 |
+
"entities": source.get("entities", [])
|
| 539 |
+
}
|
| 540 |
+
for source in sources
|
| 541 |
+
]
|
| 542 |
+
|
| 543 |
+
return ChatResponse(
|
| 544 |
+
success=True,
|
| 545 |
+
answer=answer,
|
| 546 |
+
sources=formatted_sources,
|
| 547 |
+
chat_history=chat_history,
|
| 548 |
+
processing_time=processing_time,
|
| 549 |
+
session_id=session_id,
|
| 550 |
+
query_analysis=query_analysis,
|
| 551 |
+
confidence=confidence
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
except HTTPException:
|
| 555 |
+
raise
|
| 556 |
+
except Exception as e:
|
| 557 |
+
session_logger.error(f"Advanced RAG chat processing failed: {e}")
|
| 558 |
+
raise HTTPException(status_code=500, detail=f"Chat processing failed: {str(e)}")
|
| 559 |
+
|
| 560 |
+
@app.get("/history/{session_id}")
|
| 561 |
+
async def get_session_history(session_id: str):
|
| 562 |
+
"""Get chat history for a session"""
|
| 563 |
+
session_logger = create_session_logger(session_id)
|
| 564 |
+
|
| 565 |
+
if DB is None:
|
| 566 |
+
raise HTTPException(status_code=503, detail="Database not connected")
|
| 567 |
+
|
| 568 |
+
try:
|
| 569 |
+
chat_history = get_chat_history(session_id, limit=100)
|
| 570 |
+
|
| 571 |
+
session_logger.info(f"Retrieved {len(chat_history)} chat messages")
|
| 572 |
+
|
| 573 |
+
return {
|
| 574 |
+
"success": True,
|
| 575 |
+
"session_id": session_id,
|
| 576 |
+
"chat_history": chat_history,
|
| 577 |
+
"total_messages": len(chat_history)
|
| 578 |
+
}
|
| 579 |
+
|
| 580 |
+
except Exception as e:
|
| 581 |
+
session_logger.error(f"Failed to get chat history: {e}")
|
| 582 |
+
raise HTTPException(status_code=500, detail=f"Failed to retrieve chat history: {str(e)}")
|
| 583 |
+
|
| 584 |
+
@app.delete("/session/{session_id}")
|
| 585 |
+
async def cleanup_session(session_id: str):
|
| 586 |
+
"""Clean up session from memory"""
|
| 587 |
+
session_logger = create_session_logger(session_id)
|
| 588 |
+
|
| 589 |
+
try:
|
| 590 |
+
# Remove from memory
|
| 591 |
+
with STORE_LOCK:
|
| 592 |
+
if session_id in SESSION_STORES:
|
| 593 |
+
# Clean up FAISS index
|
| 594 |
+
if SESSION_STORES[session_id].get("faiss_index"):
|
| 595 |
+
del SESSION_STORES[session_id]["faiss_index"]
|
| 596 |
+
del SESSION_STORES[session_id]
|
| 597 |
+
session_logger.info("Session removed from memory")
|
| 598 |
+
|
| 599 |
+
return {
|
| 600 |
+
"success": True,
|
| 601 |
+
"message": f"Session {session_id} cleaned up successfully"
|
| 602 |
+
}
|
| 603 |
+
|
| 604 |
+
except Exception as e:
|
| 605 |
+
session_logger.error(f"Session cleanup failed: {e}")
|
| 606 |
+
raise HTTPException(status_code=500, detail=f"Failed to cleanup session: {str(e)}")
|
| 607 |
+
|
| 608 |
+
@app.get("/sessions/active")
|
| 609 |
+
async def get_active_sessions():
|
| 610 |
+
"""Get information about active sessions in memory"""
|
| 611 |
+
try:
|
| 612 |
+
with STORE_LOCK:
|
| 613 |
+
active_sessions = []
|
| 614 |
+
for session_id, store in SESSION_STORES.items():
|
| 615 |
+
metadata = store["metadata"]
|
| 616 |
+
active_sessions.append({
|
| 617 |
+
"session_id": session_id,
|
| 618 |
+
"title": metadata["title"],
|
| 619 |
+
"chunk_count": metadata["chunk_count"],
|
| 620 |
+
"indexed": store["indexed"],
|
| 621 |
+
"loaded_at": metadata["loaded_at"].isoformat(),
|
| 622 |
+
"age_minutes": (datetime.utcnow() - metadata["loaded_at"]).total_seconds() / 60,
|
| 623 |
+
"using_precomputed_embeddings": True
|
| 624 |
+
})
|
| 625 |
+
|
| 626 |
+
return {
|
| 627 |
+
"success": True,
|
| 628 |
+
"active_sessions": active_sessions,
|
| 629 |
+
"total_sessions": len(active_sessions)
|
| 630 |
+
}
|
| 631 |
+
|
| 632 |
+
except Exception as e:
|
| 633 |
+
logger.error(f"Failed to get active sessions: {e}")
|
| 634 |
+
raise HTTPException(status_code=500, detail=f"Failed to get active sessions: {str(e)}")
|
| 635 |
+
|
| 636 |
+
@app.get("/rag/status")
|
| 637 |
+
async def get_rag_status():
|
| 638 |
+
"""Get advanced RAG system status"""
|
| 639 |
+
try:
|
| 640 |
+
return {
|
| 641 |
+
"success": True,
|
| 642 |
+
"rag_initialized": RAG_INITIALIZED,
|
| 643 |
+
"optimization": {
|
| 644 |
+
"using_precomputed_embeddings": True,
|
| 645 |
+
"no_reembedding": True,
|
| 646 |
+
"persistent_faiss_index": True,
|
| 647 |
+
"mongodb_persistence": True
|
| 648 |
+
},
|
| 649 |
+
"features": {
|
| 650 |
+
"multi_stage_retrieval": True,
|
| 651 |
+
"dense_retrieval": "FAISS + Precomputed Legal-BERT Embeddings",
|
| 652 |
+
"sparse_retrieval": "BM25",
|
| 653 |
+
"entity_based_retrieval": "Legal NER + SpaCy",
|
| 654 |
+
"graph_based_retrieval": "Legal Concept Graph",
|
| 655 |
+
"query_analysis": "Legal Intent Classification",
|
| 656 |
+
"answer_generation": "Groq LLM with IRAC Method"
|
| 657 |
+
},
|
| 658 |
+
"active_techniques": [
|
| 659 |
+
"Dense Embedding Search (FAISS with Precomputed Embeddings)",
|
| 660 |
+
"BM25 Sparse Retrieval",
|
| 661 |
+
"ColBERT Token Matching",
|
| 662 |
+
"Legal Entity Matching",
|
| 663 |
+
"Concept Graph Expansion",
|
| 664 |
+
"HyDE Query Expansion",
|
| 665 |
+
"Multi-Query Retrieval",
|
| 666 |
+
"Legal Section Classification",
|
| 667 |
+
"Importance-based Ranking"
|
| 668 |
+
]
|
| 669 |
+
}
|
| 670 |
+
|
| 671 |
+
except Exception as e:
|
| 672 |
+
logger.error(f"Failed to get RAG status: {e}")
|
| 673 |
+
raise HTTPException(status_code=500, detail=f"Failed to get RAG status: {str(e)}")
|
| 674 |
+
|
| 675 |
+
if __name__ == "__main__":
|
| 676 |
+
import uvicorn
|
| 677 |
+
port = int(os.getenv("PORT", 7861))
|
| 678 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
rag.py
ADDED
|
@@ -0,0 +1,593 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from transformers import AutoTokenizer, AutoModel
|
| 4 |
+
from typing import List, Dict, Any, Tuple, Optional
|
| 5 |
+
import faiss
|
| 6 |
+
import hashlib
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from groq import Groq
|
| 9 |
+
import re
|
| 10 |
+
import nltk
|
| 11 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 12 |
+
import networkx as nx
|
| 13 |
+
from collections import defaultdict
|
| 14 |
+
import spacy
|
| 15 |
+
from rank_bm25 import BM25Okapi
|
| 16 |
+
|
| 17 |
+
# Global variables for models
|
| 18 |
+
MODEL = None
|
| 19 |
+
TOKENIZER = None
|
| 20 |
+
GROQ_CLIENT = None
|
| 21 |
+
NLP_MODEL = None
|
| 22 |
+
DEVICE = None
|
| 23 |
+
|
| 24 |
+
# Global indices
|
| 25 |
+
DENSE_INDEX = None
|
| 26 |
+
BM25_INDEX = None
|
| 27 |
+
CONCEPT_GRAPH = None
|
| 28 |
+
TOKEN_TO_CHUNKS = None
|
| 29 |
+
CHUNKS_DATA = []
|
| 30 |
+
|
| 31 |
+
# Legal knowledge base
|
| 32 |
+
LEGAL_CONCEPTS = {
|
| 33 |
+
'liability': ['negligence', 'strict liability', 'vicarious liability', 'product liability'],
|
| 34 |
+
'contract': ['breach', 'consideration', 'offer', 'acceptance', 'damages', 'specific performance'],
|
| 35 |
+
'criminal': ['mens rea', 'actus reus', 'intent', 'malice', 'premeditation'],
|
| 36 |
+
'procedure': ['jurisdiction', 'standing', 'statute of limitations', 'res judicata'],
|
| 37 |
+
'evidence': ['hearsay', 'relevance', 'privilege', 'burden of proof', 'admissibility'],
|
| 38 |
+
'constitutional': ['due process', 'equal protection', 'free speech', 'search and seizure']
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
QUERY_PATTERNS = {
|
| 42 |
+
'precedent': ['case', 'precedent', 'ruling', 'held', 'decision'],
|
| 43 |
+
'statute_interpretation': ['statute', 'section', 'interpretation', 'meaning', 'definition'],
|
| 44 |
+
'factual': ['what happened', 'facts', 'circumstances', 'events'],
|
| 45 |
+
'procedure': ['how to', 'procedure', 'process', 'filing', 'requirements']
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
def initialize_models(model_id: str, groq_api_key: str = None):
|
| 49 |
+
"""Initialize all models and components"""
|
| 50 |
+
global MODEL, TOKENIZER, GROQ_CLIENT, NLP_MODEL, DEVICE
|
| 51 |
+
|
| 52 |
+
try:
|
| 53 |
+
nltk.download('punkt', quiet=True)
|
| 54 |
+
nltk.download('stopwords', quiet=True)
|
| 55 |
+
except:
|
| 56 |
+
pass
|
| 57 |
+
|
| 58 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 59 |
+
print(f"Using device: {DEVICE}")
|
| 60 |
+
|
| 61 |
+
print(f"Loading model: {model_id}")
|
| 62 |
+
TOKENIZER = AutoTokenizer.from_pretrained(model_id)
|
| 63 |
+
MODEL = AutoModel.from_pretrained(model_id).to(DEVICE)
|
| 64 |
+
MODEL.eval()
|
| 65 |
+
|
| 66 |
+
if groq_api_key:
|
| 67 |
+
GROQ_CLIENT = Groq(api_key=groq_api_key)
|
| 68 |
+
|
| 69 |
+
try:
|
| 70 |
+
NLP_MODEL = spacy.load("en_core_web_sm")
|
| 71 |
+
except:
|
| 72 |
+
print("SpaCy model not found, using basic NER")
|
| 73 |
+
NLP_MODEL = None
|
| 74 |
+
|
| 75 |
+
def create_embedding(text: str) -> np.ndarray:
|
| 76 |
+
"""Create dense embedding for text"""
|
| 77 |
+
inputs = TOKENIZER(text, padding=True, truncation=True,
|
| 78 |
+
max_length=512, return_tensors='pt').to(DEVICE)
|
| 79 |
+
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
outputs = MODEL(**inputs)
|
| 82 |
+
attention_mask = inputs['attention_mask']
|
| 83 |
+
token_embeddings = outputs.last_hidden_state
|
| 84 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 85 |
+
embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 86 |
+
|
| 87 |
+
# Normalize embeddings
|
| 88 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
| 89 |
+
|
| 90 |
+
return embeddings.cpu().numpy()[0]
|
| 91 |
+
|
| 92 |
+
def extract_legal_entities(text: str) -> List[Dict[str, Any]]:
|
| 93 |
+
"""Extract legal entities from text"""
|
| 94 |
+
entities = []
|
| 95 |
+
|
| 96 |
+
if NLP_MODEL:
|
| 97 |
+
doc = NLP_MODEL(text[:5000]) # Limit for performance
|
| 98 |
+
for ent in doc.ents:
|
| 99 |
+
if ent.label_ in ['PERSON', 'ORG', 'LAW', 'GPE']:
|
| 100 |
+
entities.append({
|
| 101 |
+
'text': ent.text,
|
| 102 |
+
'type': ent.label_,
|
| 103 |
+
'importance': 1.0
|
| 104 |
+
})
|
| 105 |
+
|
| 106 |
+
# Legal citations
|
| 107 |
+
citation_pattern = r'\b\d+\s+[A-Z][a-z]+\.?\s+\d+\b'
|
| 108 |
+
for match in re.finditer(citation_pattern, text):
|
| 109 |
+
entities.append({
|
| 110 |
+
'text': match.group(),
|
| 111 |
+
'type': 'case_citation',
|
| 112 |
+
'importance': 2.0
|
| 113 |
+
})
|
| 114 |
+
|
| 115 |
+
# Statute references
|
| 116 |
+
statute_pattern = r'§\s*\d+[\.\d]*|\bSection\s+\d+'
|
| 117 |
+
for match in re.finditer(statute_pattern, text):
|
| 118 |
+
entities.append({
|
| 119 |
+
'text': match.group(),
|
| 120 |
+
'type': 'statute',
|
| 121 |
+
'importance': 1.5
|
| 122 |
+
})
|
| 123 |
+
|
| 124 |
+
return entities
|
| 125 |
+
|
| 126 |
+
def analyze_query(query: str) -> Dict[str, Any]:
|
| 127 |
+
"""Analyze query to understand intent"""
|
| 128 |
+
query_lower = query.lower()
|
| 129 |
+
|
| 130 |
+
# Classify query type
|
| 131 |
+
query_type = 'general'
|
| 132 |
+
for qtype, patterns in QUERY_PATTERNS.items():
|
| 133 |
+
if any(pattern in query_lower for pattern in patterns):
|
| 134 |
+
query_type = qtype
|
| 135 |
+
break
|
| 136 |
+
|
| 137 |
+
# Extract entities
|
| 138 |
+
entities = extract_legal_entities(query)
|
| 139 |
+
|
| 140 |
+
# Extract key concepts
|
| 141 |
+
key_concepts = []
|
| 142 |
+
for concept_category, concepts in LEGAL_CONCEPTS.items():
|
| 143 |
+
for concept in concepts:
|
| 144 |
+
if concept in query_lower:
|
| 145 |
+
key_concepts.append(concept)
|
| 146 |
+
|
| 147 |
+
# Generate expanded queries
|
| 148 |
+
expanded_queries = [query]
|
| 149 |
+
|
| 150 |
+
# Concept expansion
|
| 151 |
+
if key_concepts:
|
| 152 |
+
expanded_queries.append(f"{query} {' '.join(key_concepts[:3])}")
|
| 153 |
+
|
| 154 |
+
# Type-based expansion
|
| 155 |
+
if query_type == 'precedent':
|
| 156 |
+
expanded_queries.append(f"legal precedent case law {query}")
|
| 157 |
+
elif query_type == 'statute_interpretation':
|
| 158 |
+
expanded_queries.append(f"statutory interpretation meaning {query}")
|
| 159 |
+
|
| 160 |
+
# HyDE - Hypothetical document generation
|
| 161 |
+
if GROQ_CLIENT:
|
| 162 |
+
hyde_doc = generate_hypothetical_document(query)
|
| 163 |
+
if hyde_doc:
|
| 164 |
+
expanded_queries.append(hyde_doc)
|
| 165 |
+
|
| 166 |
+
return {
|
| 167 |
+
'original_query': query,
|
| 168 |
+
'query_type': query_type,
|
| 169 |
+
'entities': entities,
|
| 170 |
+
'key_concepts': key_concepts,
|
| 171 |
+
'expanded_queries': expanded_queries[:4] # Limit to 4 queries
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
def generate_hypothetical_document(query: str) -> Optional[str]:
|
| 175 |
+
"""Generate hypothetical answer document (HyDE technique)"""
|
| 176 |
+
if not GROQ_CLIENT:
|
| 177 |
+
return None
|
| 178 |
+
|
| 179 |
+
try:
|
| 180 |
+
prompt = f"""Generate a brief hypothetical legal document excerpt that would answer this question: {query}
|
| 181 |
+
|
| 182 |
+
Write it as if it's from an actual legal case or statute. Be specific and use legal language.
|
| 183 |
+
Keep it under 100 words."""
|
| 184 |
+
|
| 185 |
+
response = GROQ_CLIENT.chat.completions.create(
|
| 186 |
+
messages=[
|
| 187 |
+
{"role": "system", "content": "You are a legal expert generating hypothetical legal text."},
|
| 188 |
+
{"role": "user", "content": prompt}
|
| 189 |
+
],
|
| 190 |
+
model="llama-3.1-8b-instant",
|
| 191 |
+
temperature=0.3,
|
| 192 |
+
max_tokens=150
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
return response.choices[0].message.content
|
| 196 |
+
except:
|
| 197 |
+
return None
|
| 198 |
+
|
| 199 |
+
def chunk_text_hierarchical(text: str, title: str = "") -> List[Dict[str, Any]]:
|
| 200 |
+
"""Create hierarchical chunks with legal structure awareness"""
|
| 201 |
+
chunks = []
|
| 202 |
+
|
| 203 |
+
# Clean text
|
| 204 |
+
text = re.sub(r'\s+', ' ', text)
|
| 205 |
+
|
| 206 |
+
# Identify legal sections
|
| 207 |
+
section_patterns = [
|
| 208 |
+
(r'(?i)\bFACTS?\b[:\s]', 'facts'),
|
| 209 |
+
(r'(?i)\bHOLDING\b[:\s]', 'holding'),
|
| 210 |
+
(r'(?i)\bREASONING\b[:\s]', 'reasoning'),
|
| 211 |
+
(r'(?i)\bDISSENT\b[:\s]', 'dissent'),
|
| 212 |
+
(r'(?i)\bCONCLUSION\b[:\s]', 'conclusion')
|
| 213 |
+
]
|
| 214 |
+
|
| 215 |
+
sections = []
|
| 216 |
+
for pattern, section_type in section_patterns:
|
| 217 |
+
matches = list(re.finditer(pattern, text))
|
| 218 |
+
for match in matches:
|
| 219 |
+
sections.append((match.start(), section_type))
|
| 220 |
+
|
| 221 |
+
sections.sort(key=lambda x: x[0])
|
| 222 |
+
|
| 223 |
+
# Split into sentences
|
| 224 |
+
import nltk
|
| 225 |
+
try:
|
| 226 |
+
sentences = nltk.sent_tokenize(text)
|
| 227 |
+
except:
|
| 228 |
+
sentences = text.split('. ')
|
| 229 |
+
|
| 230 |
+
# Create chunks
|
| 231 |
+
current_section = 'introduction'
|
| 232 |
+
section_sentences = []
|
| 233 |
+
chunk_size = 500 # words
|
| 234 |
+
|
| 235 |
+
for sent in sentences:
|
| 236 |
+
# Check section type
|
| 237 |
+
sent_pos = text.find(sent)
|
| 238 |
+
for pos, stype in sections:
|
| 239 |
+
if sent_pos >= pos:
|
| 240 |
+
current_section = stype
|
| 241 |
+
|
| 242 |
+
section_sentences.append(sent)
|
| 243 |
+
|
| 244 |
+
# Create chunk when we have enough content
|
| 245 |
+
chunk_text = ' '.join(section_sentences)
|
| 246 |
+
if len(chunk_text.split()) >= chunk_size or len(section_sentences) >= 10:
|
| 247 |
+
chunk_id = hashlib.md5(f"{title}_{len(chunks)}_{chunk_text[:50]}".encode()).hexdigest()[:12]
|
| 248 |
+
|
| 249 |
+
# Calculate importance
|
| 250 |
+
importance = 1.0
|
| 251 |
+
section_weights = {
|
| 252 |
+
'holding': 2.0, 'conclusion': 1.8, 'reasoning': 1.5,
|
| 253 |
+
'facts': 1.2, 'dissent': 0.8
|
| 254 |
+
}
|
| 255 |
+
importance *= section_weights.get(current_section, 1.0)
|
| 256 |
+
|
| 257 |
+
# Entity importance
|
| 258 |
+
entities = extract_legal_entities(chunk_text)
|
| 259 |
+
if entities:
|
| 260 |
+
entity_score = sum(e['importance'] for e in entities) / len(entities)
|
| 261 |
+
importance *= (1 + entity_score * 0.5)
|
| 262 |
+
|
| 263 |
+
chunks.append({
|
| 264 |
+
'id': chunk_id,
|
| 265 |
+
'text': chunk_text,
|
| 266 |
+
'title': title,
|
| 267 |
+
'section_type': current_section,
|
| 268 |
+
'importance_score': importance,
|
| 269 |
+
'entities': entities,
|
| 270 |
+
'embedding': None # Will be filled during indexing
|
| 271 |
+
})
|
| 272 |
+
|
| 273 |
+
section_sentences = []
|
| 274 |
+
|
| 275 |
+
# Add remaining sentences
|
| 276 |
+
if section_sentences:
|
| 277 |
+
chunk_text = ' '.join(section_sentences)
|
| 278 |
+
chunk_id = hashlib.md5(f"{title}_{len(chunks)}_{chunk_text[:50]}".encode()).hexdigest()[:12]
|
| 279 |
+
chunks.append({
|
| 280 |
+
'id': chunk_id,
|
| 281 |
+
'text': chunk_text,
|
| 282 |
+
'title': title,
|
| 283 |
+
'section_type': current_section,
|
| 284 |
+
'importance_score': 1.0,
|
| 285 |
+
'entities': extract_legal_entities(chunk_text),
|
| 286 |
+
'embedding': None
|
| 287 |
+
})
|
| 288 |
+
|
| 289 |
+
return chunks
|
| 290 |
+
|
| 291 |
+
def build_all_indices(chunks: List[Dict[str, Any]]):
|
| 292 |
+
"""Build all retrieval indices"""
|
| 293 |
+
global DENSE_INDEX, BM25_INDEX, CONCEPT_GRAPH, TOKEN_TO_CHUNKS, CHUNKS_DATA
|
| 294 |
+
|
| 295 |
+
CHUNKS_DATA = chunks
|
| 296 |
+
print(f"Building indices for {len(chunks)} chunks...")
|
| 297 |
+
|
| 298 |
+
# 1. Dense embeddings + FAISS index
|
| 299 |
+
print("Building FAISS index...")
|
| 300 |
+
embeddings = []
|
| 301 |
+
for chunk in tqdm(chunks, desc="Creating embeddings"):
|
| 302 |
+
embedding = create_embedding(chunk['text'])
|
| 303 |
+
chunk['embedding'] = embedding
|
| 304 |
+
embeddings.append(embedding)
|
| 305 |
+
|
| 306 |
+
embeddings_matrix = np.vstack(embeddings)
|
| 307 |
+
DENSE_INDEX = faiss.IndexFlatIP(embeddings_matrix.shape[1]) # Inner product for normalized vectors
|
| 308 |
+
DENSE_INDEX.add(embeddings_matrix.astype('float32'))
|
| 309 |
+
|
| 310 |
+
# 2. BM25 index for sparse retrieval
|
| 311 |
+
print("Building BM25 index...")
|
| 312 |
+
tokenized_corpus = [chunk['text'].lower().split() for chunk in chunks]
|
| 313 |
+
BM25_INDEX = BM25Okapi(tokenized_corpus)
|
| 314 |
+
|
| 315 |
+
# 3. ColBERT-style token index
|
| 316 |
+
print("Building ColBERT token index...")
|
| 317 |
+
TOKEN_TO_CHUNKS = defaultdict(set)
|
| 318 |
+
for i, chunk in enumerate(chunks):
|
| 319 |
+
# Simple tokenization for token-level matching
|
| 320 |
+
tokens = chunk['text'].lower().split()
|
| 321 |
+
for token in tokens:
|
| 322 |
+
TOKEN_TO_CHUNKS[token].add(i)
|
| 323 |
+
|
| 324 |
+
# 4. Legal concept graph
|
| 325 |
+
print("Building legal concept graph...")
|
| 326 |
+
CONCEPT_GRAPH = nx.Graph()
|
| 327 |
+
|
| 328 |
+
for i, chunk in enumerate(chunks):
|
| 329 |
+
CONCEPT_GRAPH.add_node(i, text=chunk['text'][:200], importance=chunk['importance_score'])
|
| 330 |
+
|
| 331 |
+
# Add edges between chunks with shared entities
|
| 332 |
+
for j, other_chunk in enumerate(chunks[i+1:], i+1):
|
| 333 |
+
shared_entities = set(e['text'] for e in chunk['entities']) & \
|
| 334 |
+
set(e['text'] for e in other_chunk['entities'])
|
| 335 |
+
if shared_entities:
|
| 336 |
+
CONCEPT_GRAPH.add_edge(i, j, weight=len(shared_entities))
|
| 337 |
+
|
| 338 |
+
print("All indices built successfully!")
|
| 339 |
+
|
| 340 |
+
def multi_stage_retrieval(query_analysis: Dict[str, Any], top_k: int = 10) -> List[Tuple[Dict[str, Any], float]]:
|
| 341 |
+
"""Perform multi-stage retrieval combining all techniques"""
|
| 342 |
+
candidates = {}
|
| 343 |
+
|
| 344 |
+
print("Performing multi-stage retrieval...")
|
| 345 |
+
|
| 346 |
+
# Stage 1: Dense retrieval with expanded queries
|
| 347 |
+
print("Stage 1: Dense retrieval...")
|
| 348 |
+
for query in query_analysis['expanded_queries'][:3]:
|
| 349 |
+
query_emb = create_embedding(query)
|
| 350 |
+
scores, indices = DENSE_INDEX.search(
|
| 351 |
+
query_emb.reshape(1, -1).astype('float32'),
|
| 352 |
+
top_k * 2
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
for idx, score in zip(indices[0], scores[0]):
|
| 356 |
+
if idx < len(CHUNKS_DATA):
|
| 357 |
+
chunk_id = CHUNKS_DATA[idx]['id']
|
| 358 |
+
if chunk_id not in candidates:
|
| 359 |
+
candidates[chunk_id] = {'chunk': CHUNKS_DATA[idx], 'scores': {}}
|
| 360 |
+
candidates[chunk_id]['scores']['dense'] = float(score)
|
| 361 |
+
|
| 362 |
+
# Stage 2: Sparse retrieval (BM25)
|
| 363 |
+
print("Stage 2: Sparse retrieval...")
|
| 364 |
+
query_tokens = query_analysis['original_query'].lower().split()
|
| 365 |
+
bm25_scores = BM25_INDEX.get_scores(query_tokens)
|
| 366 |
+
top_bm25_indices = np.argsort(bm25_scores)[-top_k*2:][::-1]
|
| 367 |
+
|
| 368 |
+
for idx in top_bm25_indices:
|
| 369 |
+
if idx < len(CHUNKS_DATA):
|
| 370 |
+
chunk_id = CHUNKS_DATA[idx]['id']
|
| 371 |
+
if chunk_id not in candidates:
|
| 372 |
+
candidates[chunk_id] = {'chunk': CHUNKS_DATA[idx], 'scores': {}}
|
| 373 |
+
candidates[chunk_id]['scores']['bm25'] = float(bm25_scores[idx])
|
| 374 |
+
|
| 375 |
+
# Stage 3: Entity-based retrieval
|
| 376 |
+
print("Stage 3: Entity-based retrieval...")
|
| 377 |
+
for entity in query_analysis['entities']:
|
| 378 |
+
for chunk in CHUNKS_DATA:
|
| 379 |
+
chunk_entity_texts = [e['text'].lower() for e in chunk['entities']]
|
| 380 |
+
if entity['text'].lower() in chunk_entity_texts:
|
| 381 |
+
chunk_id = chunk['id']
|
| 382 |
+
if chunk_id not in candidates:
|
| 383 |
+
candidates[chunk_id] = {'chunk': chunk, 'scores': {}}
|
| 384 |
+
candidates[chunk_id]['scores']['entity'] = \
|
| 385 |
+
candidates[chunk_id]['scores'].get('entity', 0) + entity['importance']
|
| 386 |
+
|
| 387 |
+
# Stage 4: Graph-based retrieval
|
| 388 |
+
print("Stage 4: Graph-based retrieval...")
|
| 389 |
+
if candidates and CONCEPT_GRAPH:
|
| 390 |
+
seed_chunks = []
|
| 391 |
+
for chunk_id, data in list(candidates.items())[:5]:
|
| 392 |
+
for i, chunk in enumerate(CHUNKS_DATA):
|
| 393 |
+
if chunk['id'] == chunk_id:
|
| 394 |
+
seed_chunks.append(i)
|
| 395 |
+
break
|
| 396 |
+
|
| 397 |
+
for seed_idx in seed_chunks:
|
| 398 |
+
if seed_idx in CONCEPT_GRAPH:
|
| 399 |
+
neighbors = list(CONCEPT_GRAPH.neighbors(seed_idx))[:3]
|
| 400 |
+
for neighbor_idx in neighbors:
|
| 401 |
+
if neighbor_idx < len(CHUNKS_DATA):
|
| 402 |
+
chunk = CHUNKS_DATA[neighbor_idx]
|
| 403 |
+
chunk_id = chunk['id']
|
| 404 |
+
if chunk_id not in candidates:
|
| 405 |
+
candidates[chunk_id] = {'chunk': chunk, 'scores': {}}
|
| 406 |
+
candidates[chunk_id]['scores']['graph'] = 0.5
|
| 407 |
+
|
| 408 |
+
# Combine scores
|
| 409 |
+
print("Combining scores...")
|
| 410 |
+
weights = {'dense': 0.35, 'bm25': 0.25, 'entity': 0.25, 'graph': 0.15}
|
| 411 |
+
final_scores = []
|
| 412 |
+
|
| 413 |
+
for chunk_id, data in candidates.items():
|
| 414 |
+
chunk = data['chunk']
|
| 415 |
+
scores = data['scores']
|
| 416 |
+
|
| 417 |
+
final_score = 0
|
| 418 |
+
for method, weight in weights.items():
|
| 419 |
+
if method in scores:
|
| 420 |
+
# Normalize scores
|
| 421 |
+
if method == 'dense':
|
| 422 |
+
normalized = (scores[method] + 1) / 2 # [-1, 1] to [0, 1]
|
| 423 |
+
elif method == 'bm25':
|
| 424 |
+
normalized = min(scores[method] / 10, 1)
|
| 425 |
+
elif method == 'entity':
|
| 426 |
+
normalized = min(scores[method] / 3, 1)
|
| 427 |
+
else:
|
| 428 |
+
normalized = scores[method]
|
| 429 |
+
|
| 430 |
+
final_score += weight * normalized
|
| 431 |
+
|
| 432 |
+
# Boost by importance and section relevance
|
| 433 |
+
final_score *= chunk['importance_score']
|
| 434 |
+
|
| 435 |
+
if query_analysis['query_type'] == 'precedent' and chunk['section_type'] == 'holding':
|
| 436 |
+
final_score *= 1.5
|
| 437 |
+
elif query_analysis['query_type'] == 'factual' and chunk['section_type'] == 'facts':
|
| 438 |
+
final_score *= 1.5
|
| 439 |
+
|
| 440 |
+
final_scores.append((chunk, final_score))
|
| 441 |
+
|
| 442 |
+
# Sort and return top-k
|
| 443 |
+
final_scores.sort(key=lambda x: x[1], reverse=True)
|
| 444 |
+
return final_scores[:top_k]
|
| 445 |
+
|
| 446 |
+
def generate_answer_with_reasoning(query: str, retrieved_chunks: List[Tuple[Dict[str, Any], float]]) -> Dict[str, Any]:
|
| 447 |
+
"""Generate answer with legal reasoning"""
|
| 448 |
+
if not GROQ_CLIENT:
|
| 449 |
+
return {'error': 'Groq client not initialized'}
|
| 450 |
+
|
| 451 |
+
# Prepare context
|
| 452 |
+
context_parts = []
|
| 453 |
+
for i, (chunk, score) in enumerate(retrieved_chunks, 1):
|
| 454 |
+
entities = ', '.join([e['text'] for e in chunk['entities'][:3]])
|
| 455 |
+
context_parts.append(f"""
|
| 456 |
+
Document {i} [{chunk['title']}] - Relevance: {score:.2f}
|
| 457 |
+
Section: {chunk['section_type']}
|
| 458 |
+
Key Entities: {entities}
|
| 459 |
+
Content: {chunk['text'][:800]}
|
| 460 |
+
""")
|
| 461 |
+
|
| 462 |
+
context = "\n---\n".join(context_parts)
|
| 463 |
+
|
| 464 |
+
system_prompt = """You are an expert legal analyst. Provide thorough legal analysis using the IRAC method:
|
| 465 |
+
1. ISSUE: Identify the legal issue(s)
|
| 466 |
+
2. RULE: State the applicable legal rules/precedents
|
| 467 |
+
3. APPLICATION: Apply the rules to the facts
|
| 468 |
+
4. CONCLUSION: Provide a clear conclusion
|
| 469 |
+
|
| 470 |
+
CRITICAL: Base ALL responses on the provided document excerpts only. Quote directly when making claims.
|
| 471 |
+
If information is not in the excerpts, state "This information is not provided in the available documents."
|
| 472 |
+
"""
|
| 473 |
+
|
| 474 |
+
user_prompt = f"""Query: {query}
|
| 475 |
+
|
| 476 |
+
Retrieved Legal Documents:
|
| 477 |
+
{context}
|
| 478 |
+
|
| 479 |
+
Please provide a comprehensive legal analysis using IRAC method. Cite the documents when making claims."""
|
| 480 |
+
|
| 481 |
+
try:
|
| 482 |
+
response = GROQ_CLIENT.chat.completions.create(
|
| 483 |
+
messages=[
|
| 484 |
+
{"role": "system", "content": system_prompt},
|
| 485 |
+
{"role": "user", "content": user_prompt}
|
| 486 |
+
],
|
| 487 |
+
model="llama-3.1-8b-instant",
|
| 488 |
+
temperature=0.1,
|
| 489 |
+
max_tokens=1000
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
answer = response.choices[0].message.content
|
| 493 |
+
|
| 494 |
+
# Calculate confidence
|
| 495 |
+
avg_score = sum(score for _, score in retrieved_chunks[:3]) / min(3, len(retrieved_chunks))
|
| 496 |
+
confidence = min(avg_score * 100, 100)
|
| 497 |
+
|
| 498 |
+
return {
|
| 499 |
+
'answer': answer,
|
| 500 |
+
'confidence': confidence,
|
| 501 |
+
'sources': [
|
| 502 |
+
{
|
| 503 |
+
'chunk_id': chunk['id'],
|
| 504 |
+
'title': chunk['title'],
|
| 505 |
+
'section': chunk['section_type'],
|
| 506 |
+
'relevance_score': float(score),
|
| 507 |
+
'excerpt': chunk['text'][:200] + '...',
|
| 508 |
+
'entities': [e['text'] for e in chunk['entities'][:5]]
|
| 509 |
+
}
|
| 510 |
+
for chunk, score in retrieved_chunks
|
| 511 |
+
]
|
| 512 |
+
}
|
| 513 |
+
|
| 514 |
+
except Exception as e:
|
| 515 |
+
return {
|
| 516 |
+
'error': f'Error generating answer: {str(e)}',
|
| 517 |
+
'sources': [{'chunk': c['text'][:200], 'score': s} for c, s in retrieved_chunks[:3]]
|
| 518 |
+
}
|
| 519 |
+
|
| 520 |
+
# Main functions for external use
|
| 521 |
+
def process_documents(documents: List[Dict[str, str]]) -> Dict[str, Any]:
|
| 522 |
+
"""Process documents and build indices"""
|
| 523 |
+
all_chunks = []
|
| 524 |
+
|
| 525 |
+
for doc in documents:
|
| 526 |
+
chunks = chunk_text_hierarchical(doc['text'], doc.get('title', 'Document'))
|
| 527 |
+
all_chunks.extend(chunks)
|
| 528 |
+
|
| 529 |
+
build_all_indices(all_chunks)
|
| 530 |
+
|
| 531 |
+
return {
|
| 532 |
+
'success': True,
|
| 533 |
+
'chunk_count': len(all_chunks),
|
| 534 |
+
'message': f'Processed {len(documents)} documents into {len(all_chunks)} chunks'
|
| 535 |
+
}
|
| 536 |
+
|
| 537 |
+
def query_documents(query: str, top_k: int = 5) -> Dict[str, Any]:
|
| 538 |
+
"""Main query function - takes query, returns answer with sources"""
|
| 539 |
+
if not CHUNKS_DATA:
|
| 540 |
+
return {'error': 'No documents indexed. Call process_documents first.'}
|
| 541 |
+
|
| 542 |
+
# Analyze query
|
| 543 |
+
query_analysis = analyze_query(query)
|
| 544 |
+
|
| 545 |
+
# Multi-stage retrieval
|
| 546 |
+
retrieved_chunks = multi_stage_retrieval(query_analysis, top_k)
|
| 547 |
+
|
| 548 |
+
if not retrieved_chunks:
|
| 549 |
+
return {
|
| 550 |
+
'error': 'No relevant documents found',
|
| 551 |
+
'query_analysis': query_analysis
|
| 552 |
+
}
|
| 553 |
+
|
| 554 |
+
# Generate answer
|
| 555 |
+
result = generate_answer_with_reasoning(query, retrieved_chunks)
|
| 556 |
+
result['query_analysis'] = query_analysis
|
| 557 |
+
|
| 558 |
+
return result
|
| 559 |
+
|
| 560 |
+
def search_chunks_simple(query: str, top_k: int = 3) -> List[Dict[str, Any]]:
|
| 561 |
+
"""Simple search function for compatibility"""
|
| 562 |
+
if not CHUNKS_DATA:
|
| 563 |
+
return []
|
| 564 |
+
|
| 565 |
+
query_analysis = analyze_query(query)
|
| 566 |
+
retrieved_chunks = multi_stage_retrieval(query_analysis, top_k)
|
| 567 |
+
|
| 568 |
+
results = []
|
| 569 |
+
for chunk, score in retrieved_chunks:
|
| 570 |
+
results.append({
|
| 571 |
+
'chunk': {
|
| 572 |
+
'id': chunk['id'],
|
| 573 |
+
'text': chunk['text'],
|
| 574 |
+
'title': chunk['title']
|
| 575 |
+
},
|
| 576 |
+
'score': score
|
| 577 |
+
})
|
| 578 |
+
|
| 579 |
+
return results
|
| 580 |
+
|
| 581 |
+
def generate_conservative_answer(query: str, context_chunks: List[Dict[str, Any]]) -> str:
|
| 582 |
+
"""Generate conservative answer - for compatibility"""
|
| 583 |
+
if not context_chunks:
|
| 584 |
+
return "No relevant information found."
|
| 585 |
+
|
| 586 |
+
# Convert format
|
| 587 |
+
retrieved_chunks = [(chunk['chunk'], chunk['score']) for chunk in context_chunks]
|
| 588 |
+
result = generate_answer_with_reasoning(query, retrieved_chunks)
|
| 589 |
+
|
| 590 |
+
if 'error' in result:
|
| 591 |
+
return result['error']
|
| 592 |
+
|
| 593 |
+
return result.get('answer', 'Unable to generate answer.')
|
requirements.txt
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hugging Face Spaces requirements
|
| 2 |
+
gradio==4.44.0
|
| 3 |
+
requests==2.31.0
|
| 4 |
+
fastapi==0.115.6
|
| 5 |
+
uvicorn==0.32.1
|
| 6 |
+
python-multipart==0.0.9 # ✅ needed for FastAPI endpoints
|
| 7 |
+
|
| 8 |
+
# Core ML/NLP
|
| 9 |
+
torch==2.2.2
|
| 10 |
+
transformers==4.44.2
|
| 11 |
+
sentence-transformers==2.2.2
|
| 12 |
+
spacy==3.8.2
|
| 13 |
+
scikit-learn==1.5.2
|
| 14 |
+
numpy==1.26.4
|
| 15 |
+
pandas==2.2.3
|
| 16 |
+
nltk==3.9.1
|
| 17 |
+
|
| 18 |
+
# Retrieval / Search
|
| 19 |
+
faiss-cpu==1.7.4
|
| 20 |
+
rank-bm25==0.2.2
|
| 21 |
+
|
| 22 |
+
# API clients
|
| 23 |
+
groq==0.13.0
|