Update rag.py
Browse files
rag.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import numpy as np
|
| 3 |
from transformers import AutoTokenizer, AutoModel
|
|
@@ -13,14 +14,22 @@ import networkx as nx
|
|
| 13 |
from collections import defaultdict
|
| 14 |
import spacy
|
| 15 |
from rank_bm25 import BM25Okapi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Global model instances (shared across sessions)
|
| 18 |
_SHARED_MODEL = None
|
| 19 |
_SHARED_TOKENIZER = None
|
| 20 |
_SHARED_NLP_MODEL = None
|
| 21 |
_DEVICE = None
|
|
|
|
| 22 |
|
| 23 |
-
# Legal knowledge base (
|
| 24 |
LEGAL_CONCEPTS = {
|
| 25 |
'liability': ['negligence', 'strict liability', 'vicarious liability', 'product liability'],
|
| 26 |
'contract': ['breach', 'consideration', 'offer', 'acceptance', 'damages', 'specific performance'],
|
|
@@ -39,7 +48,7 @@ QUERY_PATTERNS = {
|
|
| 39 |
|
| 40 |
def initialize_models(model_id: str, groq_api_key: str = None):
|
| 41 |
"""Initialize shared models (call once at startup)"""
|
| 42 |
-
global _SHARED_MODEL, _SHARED_TOKENIZER, _SHARED_NLP_MODEL, _DEVICE
|
| 43 |
|
| 44 |
try:
|
| 45 |
nltk.download('punkt', quiet=True)
|
|
@@ -48,21 +57,24 @@ def initialize_models(model_id: str, groq_api_key: str = None):
|
|
| 48 |
pass
|
| 49 |
|
| 50 |
_DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 51 |
-
|
| 52 |
|
| 53 |
-
|
| 54 |
_SHARED_TOKENIZER = AutoTokenizer.from_pretrained(model_id)
|
| 55 |
_SHARED_MODEL = AutoModel.from_pretrained(model_id).to(_DEVICE)
|
| 56 |
_SHARED_MODEL.eval()
|
| 57 |
|
|
|
|
|
|
|
|
|
|
| 58 |
try:
|
| 59 |
_SHARED_NLP_MODEL = spacy.load("en_core_web_sm")
|
| 60 |
except:
|
| 61 |
-
|
| 62 |
_SHARED_NLP_MODEL = None
|
| 63 |
|
| 64 |
-
class
|
| 65 |
-
"""
|
| 66 |
|
| 67 |
def __init__(self, session_id: str, groq_api_key: str = None):
|
| 68 |
self.session_id = session_id
|
|
@@ -71,495 +83,209 @@ class SessionRAG:
|
|
| 71 |
# Session-specific indices and data
|
| 72 |
self.dense_index = None
|
| 73 |
self.bm25_index = None
|
| 74 |
-
self.concept_graph = None
|
| 75 |
self.token_to_chunks = None
|
| 76 |
self.chunks_data = []
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
# Verify shared models are initialized
|
| 79 |
if _SHARED_MODEL is None or _SHARED_TOKENIZER is None:
|
| 80 |
raise ValueError("Models not initialized. Call initialize_models() first.")
|
| 81 |
|
| 82 |
-
def create_embedding(self, text: str) -> np.ndarray:
|
| 83 |
-
"""Create dense embedding for text"""
|
| 84 |
-
inputs = _SHARED_TOKENIZER(text, padding=True, truncation=True,
|
| 85 |
-
max_length=512, return_tensors='pt').to(_DEVICE)
|
| 86 |
-
|
| 87 |
-
with torch.no_grad():
|
| 88 |
-
outputs = _SHARED_MODEL(**inputs)
|
| 89 |
-
attention_mask = inputs['attention_mask']
|
| 90 |
-
token_embeddings = outputs.last_hidden_state
|
| 91 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 92 |
-
embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 93 |
-
|
| 94 |
-
# Normalize embeddings
|
| 95 |
-
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
| 96 |
-
|
| 97 |
-
return embeddings.cpu().numpy()[0]
|
| 98 |
-
|
| 99 |
def load_existing_session_data(self, chunks_from_db: List[Dict[str, Any]]):
|
| 100 |
-
"""Load pre-existing chunks with embeddings from database"""
|
| 101 |
-
|
|
|
|
| 102 |
|
| 103 |
-
# Process chunks from MongoDB format
|
| 104 |
-
self.chunks_data = self.
|
| 105 |
|
| 106 |
-
# Rebuild indices from existing embeddings
|
| 107 |
-
self.
|
| 108 |
|
| 109 |
-
|
|
|
|
| 110 |
|
| 111 |
-
def
|
| 112 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
if not self.chunks_data:
|
| 114 |
raise ValueError("No chunks data available")
|
| 115 |
|
| 116 |
-
|
|
|
|
| 117 |
|
| 118 |
-
#
|
| 119 |
embeddings = []
|
| 120 |
for chunk in self.chunks_data:
|
| 121 |
-
if
|
| 122 |
-
embeddings.append(chunk['embedding'])
|
| 123 |
-
else:
|
| 124 |
raise ValueError(f"Missing embedding for chunk {chunk.get('id', 'unknown')}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
-
# Build FAISS index
|
| 127 |
-
embeddings_matrix = np.vstack(embeddings)
|
| 128 |
self.dense_index = faiss.IndexFlatIP(embeddings_matrix.shape[1])
|
| 129 |
-
self.dense_index.add(embeddings_matrix
|
| 130 |
|
| 131 |
-
# Build
|
| 132 |
tokenized_corpus = [chunk['text'].lower().split() for chunk in self.chunks_data]
|
| 133 |
self.bm25_index = BM25Okapi(tokenized_corpus)
|
| 134 |
|
| 135 |
-
# 3.
|
| 136 |
self.token_to_chunks = defaultdict(set)
|
| 137 |
for i, chunk in enumerate(self.chunks_data):
|
| 138 |
tokens = chunk['text'].lower().split()
|
| 139 |
for token in tokens:
|
| 140 |
self.token_to_chunks[token].add(i)
|
| 141 |
|
| 142 |
-
|
| 143 |
-
self.
|
| 144 |
-
for i, chunk in enumerate(self.chunks_data):
|
| 145 |
-
self.concept_graph.add_node(i, text=chunk['text'][:200], importance=chunk['importance_score'])
|
| 146 |
-
|
| 147 |
-
for j, other_chunk in enumerate(self.chunks_data[i+1:], i+1):
|
| 148 |
-
shared_entities = set(e['text'] for e in chunk['entities']) & \
|
| 149 |
-
set(e['text'] for e in other_chunk['entities'])
|
| 150 |
-
if shared_entities:
|
| 151 |
-
self.concept_graph.add_edge(i, j, weight=len(shared_entities))
|
| 152 |
-
|
| 153 |
-
print(f"All indices rebuilt from existing embeddings for session {self.session_id}!")
|
| 154 |
|
| 155 |
-
def
|
| 156 |
-
"""
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
# Convert embedding from list to numpy array if needed
|
| 160 |
-
embedding = chunk.get('embedding')
|
| 161 |
-
if embedding and isinstance(embedding, list):
|
| 162 |
-
embedding = np.array(embedding)
|
| 163 |
-
|
| 164 |
-
processed_chunk = {
|
| 165 |
-
'id': chunk.get('chunk_id', chunk.get('id')),
|
| 166 |
-
'text': chunk.get('content', chunk.get('text', '')),
|
| 167 |
-
'title': chunk.get('title', 'Document'),
|
| 168 |
-
'section_type': chunk.get('section_type', 'general'),
|
| 169 |
-
'importance_score': chunk.get('importance_score', 1.0),
|
| 170 |
-
'entities': chunk.get('entities', []),
|
| 171 |
-
'embedding': embedding
|
| 172 |
-
}
|
| 173 |
-
processed_chunks.append(processed_chunk)
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
'text': ent.text,
|
| 187 |
-
'type': ent.label_,
|
| 188 |
-
'importance': 1.0
|
| 189 |
-
})
|
| 190 |
-
|
| 191 |
-
# Legal citations
|
| 192 |
-
citation_pattern = r'\b\d+\s+[A-Z][a-z]+\.?\s+\d+\b'
|
| 193 |
-
for match in re.finditer(citation_pattern, text):
|
| 194 |
-
entities.append({
|
| 195 |
-
'text': match.group(),
|
| 196 |
-
'type': 'case_citation',
|
| 197 |
-
'importance': 2.0
|
| 198 |
-
})
|
| 199 |
-
|
| 200 |
-
# Statute references
|
| 201 |
-
statute_pattern = r'§\s*\d+[\.\d]*|\bSection\s+\d+'
|
| 202 |
-
for match in re.finditer(statute_pattern, text):
|
| 203 |
-
entities.append({
|
| 204 |
-
'text': match.group(),
|
| 205 |
-
'type': 'statute',
|
| 206 |
-
'importance': 1.5
|
| 207 |
-
})
|
| 208 |
-
|
| 209 |
-
return entities
|
| 210 |
|
| 211 |
-
def
|
| 212 |
-
"""
|
| 213 |
query_lower = query.lower()
|
| 214 |
|
| 215 |
-
#
|
| 216 |
query_type = 'general'
|
| 217 |
for qtype, patterns in QUERY_PATTERNS.items():
|
| 218 |
if any(pattern in query_lower for pattern in patterns):
|
| 219 |
query_type = qtype
|
| 220 |
break
|
| 221 |
|
| 222 |
-
# Extract
|
| 223 |
-
entities = self.extract_legal_entities(query)
|
| 224 |
-
|
| 225 |
-
# Extract key concepts
|
| 226 |
key_concepts = []
|
| 227 |
for concept_category, concepts in LEGAL_CONCEPTS.items():
|
| 228 |
for concept in concepts:
|
| 229 |
if concept in query_lower:
|
| 230 |
key_concepts.append(concept)
|
| 231 |
|
| 232 |
-
#
|
| 233 |
expanded_queries = [query]
|
| 234 |
-
|
| 235 |
-
# Concept expansion
|
| 236 |
if key_concepts:
|
| 237 |
-
expanded_queries.append(f"{query} {' '.join(key_concepts[:
|
| 238 |
-
|
| 239 |
-
# Type-based expansion
|
| 240 |
-
if query_type == 'precedent':
|
| 241 |
-
expanded_queries.append(f"legal precedent case law {query}")
|
| 242 |
-
elif query_type == 'statute_interpretation':
|
| 243 |
-
expanded_queries.append(f"statutory interpretation meaning {query}")
|
| 244 |
-
|
| 245 |
-
# HyDE - Hypothetical document generation
|
| 246 |
-
if self.groq_client:
|
| 247 |
-
hyde_doc = self.generate_hypothetical_document(query)
|
| 248 |
-
if hyde_doc:
|
| 249 |
-
expanded_queries.append(hyde_doc)
|
| 250 |
|
| 251 |
return {
|
| 252 |
'original_query': query,
|
| 253 |
'query_type': query_type,
|
| 254 |
-
'entities': entities,
|
| 255 |
'key_concepts': key_concepts,
|
| 256 |
-
'expanded_queries': expanded_queries[:
|
| 257 |
}
|
| 258 |
|
| 259 |
-
def
|
| 260 |
-
"""
|
| 261 |
-
if not self.groq_client:
|
| 262 |
-
return None
|
| 263 |
-
|
| 264 |
-
try:
|
| 265 |
-
prompt = f"""Generate a brief hypothetical legal document excerpt that would answer this question: {query}
|
| 266 |
-
|
| 267 |
-
Write it as if it's from an actual legal case or statute. Be specific and use legal language.
|
| 268 |
-
Keep it under 100 words."""
|
| 269 |
-
|
| 270 |
-
response = self.groq_client.chat.completions.create(
|
| 271 |
-
messages=[
|
| 272 |
-
{"role": "system", "content": "You are a legal expert generating hypothetical legal text."},
|
| 273 |
-
{"role": "user", "content": prompt}
|
| 274 |
-
],
|
| 275 |
-
model="llama-3.1-8b-instant",
|
| 276 |
-
temperature=0.3,
|
| 277 |
-
max_tokens=150
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
return response.choices[0].message.content
|
| 281 |
-
except:
|
| 282 |
-
return None
|
| 283 |
-
|
| 284 |
-
def chunk_text_hierarchical(self, text: str, title: str = "") -> List[Dict[str, Any]]:
|
| 285 |
-
"""Create hierarchical chunks with legal structure awareness"""
|
| 286 |
-
chunks = []
|
| 287 |
-
|
| 288 |
-
# Clean text
|
| 289 |
-
text = re.sub(r'\s+', ' ', text)
|
| 290 |
-
|
| 291 |
-
# Identify legal sections
|
| 292 |
-
section_patterns = [
|
| 293 |
-
(r'(?i)\bFACTS?\b[:\s]', 'facts'),
|
| 294 |
-
(r'(?i)\bHOLDING\b[:\s]', 'holding'),
|
| 295 |
-
(r'(?i)\bREASONING\b[:\s]', 'reasoning'),
|
| 296 |
-
(r'(?i)\bDISSENT\b[:\s]', 'dissent'),
|
| 297 |
-
(r'(?i)\bCONCLUSION\b[:\s]', 'conclusion')
|
| 298 |
-
]
|
| 299 |
-
|
| 300 |
-
sections = []
|
| 301 |
-
for pattern, section_type in section_patterns:
|
| 302 |
-
matches = list(re.finditer(pattern, text))
|
| 303 |
-
for match in matches:
|
| 304 |
-
sections.append((match.start(), section_type))
|
| 305 |
-
|
| 306 |
-
sections.sort(key=lambda x: x[0])
|
| 307 |
-
|
| 308 |
-
# Split into sentences
|
| 309 |
-
import nltk
|
| 310 |
-
try:
|
| 311 |
-
sentences = nltk.sent_tokenize(text)
|
| 312 |
-
except:
|
| 313 |
-
sentences = text.split('. ')
|
| 314 |
-
|
| 315 |
-
# Create chunks
|
| 316 |
-
current_section = 'introduction'
|
| 317 |
-
section_sentences = []
|
| 318 |
-
chunk_size = 500 # words
|
| 319 |
-
|
| 320 |
-
for sent in sentences:
|
| 321 |
-
# Check section type
|
| 322 |
-
sent_pos = text.find(sent)
|
| 323 |
-
for pos, stype in sections:
|
| 324 |
-
if sent_pos >= pos:
|
| 325 |
-
current_section = stype
|
| 326 |
-
|
| 327 |
-
section_sentences.append(sent)
|
| 328 |
-
|
| 329 |
-
# Create chunk when we have enough content
|
| 330 |
-
chunk_text = ' '.join(section_sentences)
|
| 331 |
-
if len(chunk_text.split()) >= chunk_size or len(section_sentences) >= 10:
|
| 332 |
-
chunk_id = hashlib.md5(f"{title}_{len(chunks)}_{chunk_text[:50]}".encode()).hexdigest()[:12]
|
| 333 |
-
|
| 334 |
-
# Calculate importance
|
| 335 |
-
importance = 1.0
|
| 336 |
-
section_weights = {
|
| 337 |
-
'holding': 2.0, 'conclusion': 1.8, 'reasoning': 1.5,
|
| 338 |
-
'facts': 1.2, 'dissent': 0.8
|
| 339 |
-
}
|
| 340 |
-
importance *= section_weights.get(current_section, 1.0)
|
| 341 |
-
|
| 342 |
-
# Entity importance
|
| 343 |
-
entities = self.extract_legal_entities(chunk_text)
|
| 344 |
-
if entities:
|
| 345 |
-
entity_score = sum(e['importance'] for e in entities) / len(entities)
|
| 346 |
-
importance *= (1 + entity_score * 0.5)
|
| 347 |
-
|
| 348 |
-
chunks.append({
|
| 349 |
-
'id': chunk_id,
|
| 350 |
-
'text': chunk_text,
|
| 351 |
-
'title': title,
|
| 352 |
-
'section_type': current_section,
|
| 353 |
-
'importance_score': importance,
|
| 354 |
-
'entities': entities,
|
| 355 |
-
'embedding': None # Will be filled during indexing
|
| 356 |
-
})
|
| 357 |
-
|
| 358 |
-
section_sentences = []
|
| 359 |
-
|
| 360 |
-
# Add remaining sentences
|
| 361 |
-
if section_sentences:
|
| 362 |
-
chunk_text = ' '.join(section_sentences)
|
| 363 |
-
chunk_id = hashlib.md5(f"{title}_{len(chunks)}_{chunk_text[:50]}".encode()).hexdigest()[:12]
|
| 364 |
-
chunks.append({
|
| 365 |
-
'id': chunk_id,
|
| 366 |
-
'text': chunk_text,
|
| 367 |
-
'title': title,
|
| 368 |
-
'section_type': current_section,
|
| 369 |
-
'importance_score': 1.0,
|
| 370 |
-
'entities': self.extract_legal_entities(chunk_text),
|
| 371 |
-
'embedding': None
|
| 372 |
-
})
|
| 373 |
-
|
| 374 |
-
return chunks
|
| 375 |
-
|
| 376 |
-
def build_all_indices(self, chunks: List[Dict[str, Any]]):
|
| 377 |
-
"""Build all retrieval indices for this session"""
|
| 378 |
-
self.chunks_data = chunks
|
| 379 |
-
print(f"Building indices for session {self.session_id}: {len(chunks)} chunks...")
|
| 380 |
-
|
| 381 |
-
# 1. Dense embeddings + FAISS index
|
| 382 |
-
print("Building FAISS index...")
|
| 383 |
-
embeddings = []
|
| 384 |
-
for chunk in tqdm(chunks, desc="Creating embeddings"):
|
| 385 |
-
embedding = self.create_embedding(chunk['text'])
|
| 386 |
-
chunk['embedding'] = embedding
|
| 387 |
-
embeddings.append(embedding)
|
| 388 |
-
|
| 389 |
-
embeddings_matrix = np.vstack(embeddings)
|
| 390 |
-
self.dense_index = faiss.IndexFlatIP(embeddings_matrix.shape[1]) # Inner product for normalized vectors
|
| 391 |
-
self.dense_index.add(embeddings_matrix.astype('float32'))
|
| 392 |
-
|
| 393 |
-
# 2. BM25 index for sparse retrieval
|
| 394 |
-
print("Building BM25 index...")
|
| 395 |
-
tokenized_corpus = [chunk['text'].lower().split() for chunk in chunks]
|
| 396 |
-
self.bm25_index = BM25Okapi(tokenized_corpus)
|
| 397 |
-
|
| 398 |
-
# 3. ColBERT-style token index
|
| 399 |
-
print("Building ColBERT token index...")
|
| 400 |
-
self.token_to_chunks = defaultdict(set)
|
| 401 |
-
for i, chunk in enumerate(chunks):
|
| 402 |
-
# Simple tokenization for token-level matching
|
| 403 |
-
tokens = chunk['text'].lower().split()
|
| 404 |
-
for token in tokens:
|
| 405 |
-
self.token_to_chunks[token].add(i)
|
| 406 |
-
|
| 407 |
-
# 4. Legal concept graph
|
| 408 |
-
print("Building legal concept graph...")
|
| 409 |
-
self.concept_graph = nx.Graph()
|
| 410 |
-
|
| 411 |
-
for i, chunk in enumerate(chunks):
|
| 412 |
-
self.concept_graph.add_node(i, text=chunk['text'][:200], importance=chunk['importance_score'])
|
| 413 |
-
|
| 414 |
-
# Add edges between chunks with shared entities
|
| 415 |
-
for j, other_chunk in enumerate(chunks[i+1:], i+1):
|
| 416 |
-
shared_entities = set(e['text'] for e in chunk['entities']) & \
|
| 417 |
-
set(e['text'] for e in other_chunk['entities'])
|
| 418 |
-
if shared_entities:
|
| 419 |
-
self.concept_graph.add_edge(i, j, weight=len(shared_entities))
|
| 420 |
-
|
| 421 |
-
print(f"All indices built successfully for session {self.session_id}!")
|
| 422 |
-
|
| 423 |
-
def multi_stage_retrieval(self, query_analysis: Dict[str, Any], top_k: int = 10) -> List[Tuple[Dict[str, Any], float]]:
|
| 424 |
-
"""Perform multi-stage retrieval combining all techniques"""
|
| 425 |
candidates = {}
|
| 426 |
|
| 427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
-
for idx
|
| 439 |
if idx < len(self.chunks_data):
|
| 440 |
-
|
| 441 |
-
if chunk_id not in candidates:
|
| 442 |
-
candidates[chunk_id] = {'chunk': self.chunks_data[idx], 'scores': {}}
|
| 443 |
-
candidates[chunk_id]['scores']['dense'] = float(score)
|
| 444 |
-
|
| 445 |
-
# Stage 2: Sparse retrieval (BM25)
|
| 446 |
-
print("Stage 2: Sparse retrieval...")
|
| 447 |
-
query_tokens = query_analysis['original_query'].lower().split()
|
| 448 |
-
bm25_scores = self.bm25_index.get_scores(query_tokens)
|
| 449 |
-
top_bm25_indices = np.argsort(bm25_scores)[-top_k*2:][::-1]
|
| 450 |
-
|
| 451 |
-
for idx in top_bm25_indices:
|
| 452 |
-
if idx < len(self.chunks_data):
|
| 453 |
-
chunk_id = self.chunks_data[idx]['id']
|
| 454 |
-
if chunk_id not in candidates:
|
| 455 |
-
candidates[chunk_id] = {'chunk': self.chunks_data[idx], 'scores': {}}
|
| 456 |
-
candidates[chunk_id]['scores']['bm25'] = float(bm25_scores[idx])
|
| 457 |
-
|
| 458 |
-
# Stage 3: Entity-based retrieval
|
| 459 |
-
print("Stage 3: Entity-based retrieval...")
|
| 460 |
-
for entity in query_analysis['entities']:
|
| 461 |
-
for chunk in self.chunks_data:
|
| 462 |
-
chunk_entity_texts = [e['text'].lower() for e in chunk['entities']]
|
| 463 |
-
if entity['text'].lower() in chunk_entity_texts:
|
| 464 |
chunk_id = chunk['id']
|
| 465 |
if chunk_id not in candidates:
|
| 466 |
-
candidates[chunk_id] = {
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
# Stage 4: Graph-based retrieval
|
| 471 |
-
print("Stage 4: Graph-based retrieval...")
|
| 472 |
-
if candidates and self.concept_graph:
|
| 473 |
-
seed_chunks = []
|
| 474 |
-
for chunk_id, data in list(candidates.items())[:5]:
|
| 475 |
-
for i, chunk in enumerate(self.chunks_data):
|
| 476 |
-
if chunk['id'] == chunk_id:
|
| 477 |
-
seed_chunks.append(i)
|
| 478 |
-
break
|
| 479 |
-
|
| 480 |
-
for seed_idx in seed_chunks:
|
| 481 |
-
if seed_idx in self.concept_graph:
|
| 482 |
-
neighbors = list(self.concept_graph.neighbors(seed_idx))[:3]
|
| 483 |
-
for neighbor_idx in neighbors:
|
| 484 |
-
if neighbor_idx < len(self.chunks_data):
|
| 485 |
-
chunk = self.chunks_data[neighbor_idx]
|
| 486 |
-
chunk_id = chunk['id']
|
| 487 |
-
if chunk_id not in candidates:
|
| 488 |
-
candidates[chunk_id] = {'chunk': chunk, 'scores': {}}
|
| 489 |
-
candidates[chunk_id]['scores']['graph'] = 0.5
|
| 490 |
-
|
| 491 |
-
# Combine scores
|
| 492 |
-
print("Combining scores...")
|
| 493 |
-
weights = {'dense': 0.35, 'bm25': 0.25, 'entity': 0.25, 'graph': 0.15}
|
| 494 |
-
final_scores = []
|
| 495 |
-
|
| 496 |
-
for chunk_id, data in candidates.items():
|
| 497 |
-
chunk = data['chunk']
|
| 498 |
-
scores = data['scores']
|
| 499 |
-
|
| 500 |
-
final_score = 0
|
| 501 |
-
for method, weight in weights.items():
|
| 502 |
-
if method in scores:
|
| 503 |
-
# Normalize scores
|
| 504 |
-
if method == 'dense':
|
| 505 |
-
normalized = (scores[method] + 1) / 2 # [-1, 1] to [0, 1]
|
| 506 |
-
elif method == 'bm25':
|
| 507 |
-
normalized = min(scores[method] / 10, 1)
|
| 508 |
-
elif method == 'entity':
|
| 509 |
-
normalized = min(scores[method] / 3, 1)
|
| 510 |
else:
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
final_score += weight * normalized
|
| 514 |
-
|
| 515 |
-
# Boost by importance and section relevance
|
| 516 |
-
final_score *= chunk['importance_score']
|
| 517 |
-
|
| 518 |
-
if query_analysis['query_type'] == 'precedent' and chunk['section_type'] == 'holding':
|
| 519 |
-
final_score *= 1.5
|
| 520 |
-
elif query_analysis['query_type'] == 'factual' and chunk['section_type'] == 'facts':
|
| 521 |
-
final_score *= 1.5
|
| 522 |
-
|
| 523 |
-
final_scores.append((chunk, final_score))
|
| 524 |
|
| 525 |
-
#
|
|
|
|
| 526 |
final_scores.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
| 527 |
return final_scores[:top_k]
|
| 528 |
|
| 529 |
-
def
|
| 530 |
-
"""Generate answer with
|
| 531 |
if not self.groq_client:
|
| 532 |
return {'error': 'Groq client not initialized'}
|
| 533 |
|
| 534 |
-
# Prepare context
|
| 535 |
context_parts = []
|
| 536 |
-
for i, (chunk, score) in enumerate(retrieved_chunks, 1):
|
| 537 |
-
entities = ', '.join([e['text'] for e in chunk['entities'][:3]])
|
| 538 |
context_parts.append(f"""
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
Content: {chunk['text'][:800]}
|
| 543 |
-
""")
|
| 544 |
|
| 545 |
context = "\n---\n".join(context_parts)
|
| 546 |
|
| 547 |
-
system_prompt = """You are
|
| 548 |
-
1. ISSUE: Identify the legal issue(s)
|
| 549 |
-
2. RULE: State the applicable legal rules/precedents
|
| 550 |
-
3. APPLICATION: Apply the rules to the facts
|
| 551 |
-
4. CONCLUSION: Provide a clear conclusion
|
| 552 |
-
|
| 553 |
-
CRITICAL: Base ALL responses on the provided document excerpts only. Quote directly when making claims.
|
| 554 |
-
If information is not in the excerpts, state "This information is not provided in the available documents."
|
| 555 |
-
"""
|
| 556 |
|
| 557 |
user_prompt = f"""Query: {query}
|
| 558 |
|
| 559 |
-
|
| 560 |
-
|
| 561 |
|
| 562 |
-
|
| 563 |
|
| 564 |
try:
|
| 565 |
response = self.groq_client.chat.completions.create(
|
|
@@ -569,7 +295,7 @@ class SessionRAG:
|
|
| 569 |
],
|
| 570 |
model="llama-3.1-8b-instant",
|
| 571 |
temperature=0.1,
|
| 572 |
-
max_tokens=
|
| 573 |
)
|
| 574 |
|
| 575 |
answer = response.choices[0].message.content
|
|
@@ -587,45 +313,28 @@ class SessionRAG:
|
|
| 587 |
'title': chunk['title'],
|
| 588 |
'section': chunk['section_type'],
|
| 589 |
'relevance_score': float(score),
|
| 590 |
-
'
|
| 591 |
-
'entities': [e['text'] for e in chunk['entities'][:
|
| 592 |
}
|
| 593 |
-
for chunk, score in retrieved_chunks
|
| 594 |
]
|
| 595 |
}
|
| 596 |
|
| 597 |
except Exception as e:
|
| 598 |
-
return {
|
| 599 |
-
'error': f'Error generating answer: {str(e)}',
|
| 600 |
-
'sources': [{'chunk': c['text'][:200], 'score': s} for c, s in retrieved_chunks[:3]]
|
| 601 |
-
}
|
| 602 |
-
|
| 603 |
-
def process_documents(self, documents: List[Dict[str, str]]) -> Dict[str, Any]:
|
| 604 |
-
"""Process documents and build indices for this session"""
|
| 605 |
-
all_chunks = []
|
| 606 |
-
|
| 607 |
-
for doc in documents:
|
| 608 |
-
chunks = self.chunk_text_hierarchical(doc['text'], doc.get('title', 'Document'))
|
| 609 |
-
all_chunks.extend(chunks)
|
| 610 |
-
|
| 611 |
-
self.build_all_indices(all_chunks)
|
| 612 |
-
|
| 613 |
-
return {
|
| 614 |
-
'success': True,
|
| 615 |
-
'chunk_count': len(all_chunks),
|
| 616 |
-
'message': f'Processed {len(documents)} documents into {len(all_chunks)} chunks for session {self.session_id}'
|
| 617 |
-
}
|
| 618 |
|
| 619 |
def query_documents(self, query: str, top_k: int = 5) -> Dict[str, Any]:
|
| 620 |
-
"""Main query function
|
| 621 |
if not self.chunks_data:
|
| 622 |
-
return {'error': f'No documents indexed for session {self.session_id}
|
| 623 |
|
| 624 |
-
|
| 625 |
-
query_analysis = self.analyze_query(query)
|
| 626 |
|
| 627 |
-
#
|
| 628 |
-
|
|
|
|
|
|
|
|
|
|
| 629 |
|
| 630 |
if not retrieved_chunks:
|
| 631 |
return {
|
|
@@ -634,59 +343,12 @@ class SessionRAG:
|
|
| 634 |
}
|
| 635 |
|
| 636 |
# Generate answer
|
| 637 |
-
result = self.
|
| 638 |
result['query_analysis'] = query_analysis
|
|
|
|
| 639 |
|
|
|
|
| 640 |
return result
|
| 641 |
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
if not self.chunks_data:
|
| 645 |
-
return []
|
| 646 |
-
|
| 647 |
-
query_analysis = self.analyze_query(query)
|
| 648 |
-
retrieved_chunks = self.multi_stage_retrieval(query_analysis, top_k)
|
| 649 |
-
|
| 650 |
-
results = []
|
| 651 |
-
for chunk, score in retrieved_chunks:
|
| 652 |
-
results.append({
|
| 653 |
-
'chunk': {
|
| 654 |
-
'id': chunk['id'],
|
| 655 |
-
'text': chunk['text'],
|
| 656 |
-
'title': chunk['title']
|
| 657 |
-
},
|
| 658 |
-
'score': score
|
| 659 |
-
})
|
| 660 |
-
|
| 661 |
-
return results
|
| 662 |
-
|
| 663 |
-
def generate_conservative_answer(self, query: str, context_chunks: List[Dict[str, Any]]) -> str:
|
| 664 |
-
"""Generate conservative answer - for compatibility"""
|
| 665 |
-
if not context_chunks:
|
| 666 |
-
return "No relevant information found."
|
| 667 |
-
|
| 668 |
-
# Convert format
|
| 669 |
-
retrieved_chunks = [(chunk['chunk'], chunk['score']) for chunk in context_chunks]
|
| 670 |
-
result = self.generate_answer_with_reasoning(query, retrieved_chunks)
|
| 671 |
-
|
| 672 |
-
if 'error' in result:
|
| 673 |
-
return result['error']
|
| 674 |
-
|
| 675 |
-
return result.get('answer', 'Unable to generate answer.')
|
| 676 |
-
|
| 677 |
-
# Backward compatibility functions (deprecated - use SessionRAG instead)
|
| 678 |
-
def process_documents(documents: List[Dict[str, str]]) -> Dict[str, Any]:
|
| 679 |
-
"""Deprecated: Use SessionRAG.process_documents() instead"""
|
| 680 |
-
raise NotImplementedError("Global functions are deprecated. Use SessionRAG class instead.")
|
| 681 |
-
|
| 682 |
-
def query_documents(query: str, top_k: int = 5) -> Dict[str, Any]:
|
| 683 |
-
"""Deprecated: Use SessionRAG.query_documents() instead"""
|
| 684 |
-
raise NotImplementedError("Global functions are deprecated. Use SessionRAG class instead.")
|
| 685 |
-
|
| 686 |
-
def search_chunks_simple(query: str, top_k: int = 3) -> List[Dict[str, Any]]:
|
| 687 |
-
"""Deprecated: Use SessionRAG.search_chunks_simple() instead"""
|
| 688 |
-
raise NotImplementedError("Global functions are deprecated. Use SessionRAG class instead.")
|
| 689 |
-
|
| 690 |
-
def generate_conservative_answer(query: str, context_chunks: List[Dict[str, Any]]) -> str:
|
| 691 |
-
"""Deprecated: Use SessionRAG.generate_conservative_answer() instead"""
|
| 692 |
-
raise NotImplementedError("Global functions are deprecated. Use SessionRAG class instead.")
|
|
|
|
| 1 |
+
# rag_optimized.py - Performance-Optimized RAG System
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
| 14 |
from collections import defaultdict
|
| 15 |
import spacy
|
| 16 |
from rank_bm25 import BM25Okapi
|
| 17 |
+
import asyncio
|
| 18 |
+
import time
|
| 19 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 20 |
+
import logging
|
| 21 |
+
|
| 22 |
+
# Configure logging
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
|
| 25 |
# Global model instances (shared across sessions)
|
| 26 |
_SHARED_MODEL = None
|
| 27 |
_SHARED_TOKENIZER = None
|
| 28 |
_SHARED_NLP_MODEL = None
|
| 29 |
_DEVICE = None
|
| 30 |
+
_THREAD_POOL = None
|
| 31 |
|
| 32 |
+
# Legal knowledge base (optimized)
|
| 33 |
LEGAL_CONCEPTS = {
|
| 34 |
'liability': ['negligence', 'strict liability', 'vicarious liability', 'product liability'],
|
| 35 |
'contract': ['breach', 'consideration', 'offer', 'acceptance', 'damages', 'specific performance'],
|
|
|
|
| 48 |
|
| 49 |
def initialize_models(model_id: str, groq_api_key: str = None):
|
| 50 |
"""Initialize shared models (call once at startup)"""
|
| 51 |
+
global _SHARED_MODEL, _SHARED_TOKENIZER, _SHARED_NLP_MODEL, _DEVICE, _THREAD_POOL
|
| 52 |
|
| 53 |
try:
|
| 54 |
nltk.download('punkt', quiet=True)
|
|
|
|
| 57 |
pass
|
| 58 |
|
| 59 |
_DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 60 |
+
logger.info(f"Using device: {_DEVICE}")
|
| 61 |
|
| 62 |
+
logger.info(f"Loading model: {model_id}")
|
| 63 |
_SHARED_TOKENIZER = AutoTokenizer.from_pretrained(model_id)
|
| 64 |
_SHARED_MODEL = AutoModel.from_pretrained(model_id).to(_DEVICE)
|
| 65 |
_SHARED_MODEL.eval()
|
| 66 |
|
| 67 |
+
# Initialize thread pool for CPU-bound operations
|
| 68 |
+
_THREAD_POOL = ThreadPoolExecutor(max_workers=4)
|
| 69 |
+
|
| 70 |
try:
|
| 71 |
_SHARED_NLP_MODEL = spacy.load("en_core_web_sm")
|
| 72 |
except:
|
| 73 |
+
logger.warning("SpaCy model not found, using basic NER")
|
| 74 |
_SHARED_NLP_MODEL = None
|
| 75 |
|
| 76 |
+
class OptimizedSessionRAG:
|
| 77 |
+
"""High-performance session-specific RAG instance that loads pre-computed embeddings"""
|
| 78 |
|
| 79 |
def __init__(self, session_id: str, groq_api_key: str = None):
|
| 80 |
self.session_id = session_id
|
|
|
|
| 83 |
# Session-specific indices and data
|
| 84 |
self.dense_index = None
|
| 85 |
self.bm25_index = None
|
|
|
|
| 86 |
self.token_to_chunks = None
|
| 87 |
self.chunks_data = []
|
| 88 |
|
| 89 |
+
# Performance tracking
|
| 90 |
+
self.load_time = None
|
| 91 |
+
self.index_build_time = None
|
| 92 |
+
|
| 93 |
# Verify shared models are initialized
|
| 94 |
if _SHARED_MODEL is None or _SHARED_TOKENIZER is None:
|
| 95 |
raise ValueError("Models not initialized. Call initialize_models() first.")
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
def load_existing_session_data(self, chunks_from_db: List[Dict[str, Any]]):
|
| 98 |
+
"""OPTIMIZED: Load pre-existing chunks with embeddings from database - NO EMBEDDING CREATION"""
|
| 99 |
+
start_time = time.time()
|
| 100 |
+
logger.info(f"Loading existing session data for {self.session_id}: {len(chunks_from_db)} chunks...")
|
| 101 |
|
| 102 |
+
# Process chunks from MongoDB format - DIRECT LOADING, NO EMBEDDING COMPUTATION
|
| 103 |
+
self.chunks_data = self._process_db_chunks_fast(chunks_from_db)
|
| 104 |
|
| 105 |
+
# Rebuild indices from existing embeddings ONLY
|
| 106 |
+
self._rebuild_indices_from_precomputed_embeddings()
|
| 107 |
|
| 108 |
+
self.load_time = time.time() - start_time
|
| 109 |
+
logger.info(f"Session {self.session_id} loaded in {self.load_time:.2f}s with PRE-COMPUTED embeddings!")
|
| 110 |
|
| 111 |
+
def _process_db_chunks_fast(self, chunks_from_db: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
| 112 |
+
"""FAST: Convert MongoDB chunk format to internal format without any computation"""
|
| 113 |
+
processed_chunks = []
|
| 114 |
+
|
| 115 |
+
for chunk in chunks_from_db:
|
| 116 |
+
# Convert embedding from list to numpy array if needed - NO COMPUTATION
|
| 117 |
+
embedding = chunk.get('embedding')
|
| 118 |
+
if embedding is None:
|
| 119 |
+
raise ValueError(f"Missing embedding for chunk {chunk.get('chunk_id', 'unknown')}")
|
| 120 |
+
|
| 121 |
+
if isinstance(embedding, list):
|
| 122 |
+
embedding = np.array(embedding, dtype=np.float32)
|
| 123 |
+
|
| 124 |
+
processed_chunk = {
|
| 125 |
+
'id': chunk.get('chunk_id', chunk.get('id')),
|
| 126 |
+
'text': chunk.get('content', chunk.get('text', '')),
|
| 127 |
+
'title': chunk.get('title', 'Document'),
|
| 128 |
+
'section_type': chunk.get('section_type', 'general'),
|
| 129 |
+
'importance_score': chunk.get('importance_score', 1.0),
|
| 130 |
+
'entities': chunk.get('entities', []),
|
| 131 |
+
'embedding': embedding # PRE-COMPUTED, NO CREATION
|
| 132 |
+
}
|
| 133 |
+
processed_chunks.append(processed_chunk)
|
| 134 |
+
|
| 135 |
+
return processed_chunks
|
| 136 |
+
|
| 137 |
+
def _rebuild_indices_from_precomputed_embeddings(self):
|
| 138 |
+
"""OPTIMIZED: Rebuild search indices using ONLY pre-computed embeddings from database"""
|
| 139 |
if not self.chunks_data:
|
| 140 |
raise ValueError("No chunks data available")
|
| 141 |
|
| 142 |
+
start_time = time.time()
|
| 143 |
+
logger.info(f"Rebuilding indices from {len(self.chunks_data)} pre-computed embeddings...")
|
| 144 |
|
| 145 |
+
# 1. Build FAISS index from existing embeddings - NO EMBEDDING COMPUTATION
|
| 146 |
embeddings = []
|
| 147 |
for chunk in self.chunks_data:
|
| 148 |
+
if chunk['embedding'] is None:
|
|
|
|
|
|
|
| 149 |
raise ValueError(f"Missing embedding for chunk {chunk.get('id', 'unknown')}")
|
| 150 |
+
embeddings.append(chunk['embedding'])
|
| 151 |
+
|
| 152 |
+
# Stack embeddings efficiently
|
| 153 |
+
embeddings_matrix = np.vstack(embeddings).astype('float32')
|
| 154 |
+
logger.info(f"Built embeddings matrix: {embeddings_matrix.shape}")
|
| 155 |
|
| 156 |
+
# Build FAISS index
|
|
|
|
| 157 |
self.dense_index = faiss.IndexFlatIP(embeddings_matrix.shape[1])
|
| 158 |
+
self.dense_index.add(embeddings_matrix)
|
| 159 |
|
| 160 |
+
# 2. Build BM25 index efficiently
|
| 161 |
tokenized_corpus = [chunk['text'].lower().split() for chunk in self.chunks_data]
|
| 162 |
self.bm25_index = BM25Okapi(tokenized_corpus)
|
| 163 |
|
| 164 |
+
# 3. Build token-to-chunk mapping efficiently
|
| 165 |
self.token_to_chunks = defaultdict(set)
|
| 166 |
for i, chunk in enumerate(self.chunks_data):
|
| 167 |
tokens = chunk['text'].lower().split()
|
| 168 |
for token in tokens:
|
| 169 |
self.token_to_chunks[token].add(i)
|
| 170 |
|
| 171 |
+
self.index_build_time = time.time() - start_time
|
| 172 |
+
logger.info(f"All indices rebuilt in {self.index_build_time:.2f}s from pre-computed embeddings!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
+
def create_embedding(self, text: str) -> np.ndarray:
|
| 175 |
+
"""Create embedding for query (ONLY used for new queries, not document loading)"""
|
| 176 |
+
inputs = _SHARED_TOKENIZER(text, padding=True, truncation=True,
|
| 177 |
+
max_length=512, return_tensors='pt').to(_DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
+
with torch.no_grad():
|
| 180 |
+
outputs = _SHARED_MODEL(**inputs)
|
| 181 |
+
attention_mask = inputs['attention_mask']
|
| 182 |
+
token_embeddings = outputs.last_hidden_state
|
| 183 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 184 |
+
embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 185 |
+
|
| 186 |
+
# Normalize embeddings
|
| 187 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
| 188 |
+
|
| 189 |
+
return embeddings.cpu().numpy()[0].astype('float32')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
+
def analyze_query_fast(self, query: str) -> Dict[str, Any]:
|
| 192 |
+
"""FAST query analysis - minimal processing"""
|
| 193 |
query_lower = query.lower()
|
| 194 |
|
| 195 |
+
# Quick query type classification
|
| 196 |
query_type = 'general'
|
| 197 |
for qtype, patterns in QUERY_PATTERNS.items():
|
| 198 |
if any(pattern in query_lower for pattern in patterns):
|
| 199 |
query_type = qtype
|
| 200 |
break
|
| 201 |
|
| 202 |
+
# Extract key concepts quickly
|
|
|
|
|
|
|
|
|
|
| 203 |
key_concepts = []
|
| 204 |
for concept_category, concepts in LEGAL_CONCEPTS.items():
|
| 205 |
for concept in concepts:
|
| 206 |
if concept in query_lower:
|
| 207 |
key_concepts.append(concept)
|
| 208 |
|
| 209 |
+
# Simple query expansion
|
| 210 |
expanded_queries = [query]
|
|
|
|
|
|
|
| 211 |
if key_concepts:
|
| 212 |
+
expanded_queries.append(f"{query} {' '.join(key_concepts[:2])}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
return {
|
| 215 |
'original_query': query,
|
| 216 |
'query_type': query_type,
|
|
|
|
| 217 |
'key_concepts': key_concepts,
|
| 218 |
+
'expanded_queries': expanded_queries[:2] # Limit to 2 for speed
|
| 219 |
}
|
| 220 |
|
| 221 |
+
def fast_retrieval(self, query_analysis: Dict[str, Any], top_k: int = 10) -> List[Tuple[Dict[str, Any], float]]:
|
| 222 |
+
"""OPTIMIZED: Fast multi-stage retrieval with minimal overhead"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
candidates = {}
|
| 224 |
|
| 225 |
+
# Stage 1: Dense retrieval with primary query only
|
| 226 |
+
query = query_analysis['original_query']
|
| 227 |
+
query_emb = self.create_embedding(query)
|
| 228 |
+
scores, indices = self.dense_index.search(
|
| 229 |
+
query_emb.reshape(1, -1),
|
| 230 |
+
min(top_k * 2, len(self.chunks_data))
|
| 231 |
+
)
|
| 232 |
|
| 233 |
+
for idx, score in zip(indices[0], scores[0]):
|
| 234 |
+
if idx < len(self.chunks_data):
|
| 235 |
+
chunk = self.chunks_data[idx]
|
| 236 |
+
chunk_id = chunk['id']
|
| 237 |
+
candidates[chunk_id] = {
|
| 238 |
+
'chunk': chunk,
|
| 239 |
+
'score': float(score) * chunk['importance_score']
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
# Stage 2: BM25 boost for top candidates
|
| 243 |
+
if len(candidates) < top_k:
|
| 244 |
+
query_tokens = query.lower().split()
|
| 245 |
+
bm25_scores = self.bm25_index.get_scores(query_tokens)
|
| 246 |
+
top_bm25_indices = np.argsort(bm25_scores)[-top_k:][::-1]
|
| 247 |
|
| 248 |
+
for idx in top_bm25_indices:
|
| 249 |
if idx < len(self.chunks_data):
|
| 250 |
+
chunk = self.chunks_data[idx]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
chunk_id = chunk['id']
|
| 252 |
if chunk_id not in candidates:
|
| 253 |
+
candidates[chunk_id] = {
|
| 254 |
+
'chunk': chunk,
|
| 255 |
+
'score': float(bm25_scores[idx]) * 0.3 # Lower weight for BM25
|
| 256 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
else:
|
| 258 |
+
candidates[chunk_id]['score'] += float(bm25_scores[idx]) * 0.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
+
# Convert to list and sort
|
| 261 |
+
final_scores = [(data['chunk'], data['score']) for data in candidates.values()]
|
| 262 |
final_scores.sort(key=lambda x: x[1], reverse=True)
|
| 263 |
+
|
| 264 |
return final_scores[:top_k]
|
| 265 |
|
| 266 |
+
def generate_fast_answer(self, query: str, retrieved_chunks: List[Tuple[Dict[str, Any], float]]) -> Dict[str, Any]:
|
| 267 |
+
"""Generate answer with minimal overhead"""
|
| 268 |
if not self.groq_client:
|
| 269 |
return {'error': 'Groq client not initialized'}
|
| 270 |
|
| 271 |
+
# Prepare context efficiently
|
| 272 |
context_parts = []
|
| 273 |
+
for i, (chunk, score) in enumerate(retrieved_chunks[:3], 1): # Limit to top 3 for speed
|
|
|
|
| 274 |
context_parts.append(f"""
|
| 275 |
+
Document {i} - Relevance: {score:.2f}
|
| 276 |
+
{chunk['text'][:600]}
|
| 277 |
+
""")
|
|
|
|
|
|
|
| 278 |
|
| 279 |
context = "\n---\n".join(context_parts)
|
| 280 |
|
| 281 |
+
system_prompt = """You are a legal AI assistant. Provide concise, accurate answers based ONLY on the provided documents. If information isn't in the documents, state that clearly."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
user_prompt = f"""Query: {query}
|
| 284 |
|
| 285 |
+
Documents:
|
| 286 |
+
{context}
|
| 287 |
|
| 288 |
+
Provide a clear, concise answer based on the documents."""
|
| 289 |
|
| 290 |
try:
|
| 291 |
response = self.groq_client.chat.completions.create(
|
|
|
|
| 295 |
],
|
| 296 |
model="llama-3.1-8b-instant",
|
| 297 |
temperature=0.1,
|
| 298 |
+
max_tokens=500 # Limit for speed
|
| 299 |
)
|
| 300 |
|
| 301 |
answer = response.choices[0].message.content
|
|
|
|
| 313 |
'title': chunk['title'],
|
| 314 |
'section': chunk['section_type'],
|
| 315 |
'relevance_score': float(score),
|
| 316 |
+
'text_preview': chunk['text'][:200] + '...',
|
| 317 |
+
'entities': [e['text'] for e in chunk['entities'][:3]]
|
| 318 |
}
|
| 319 |
+
for chunk, score in retrieved_chunks[:5]
|
| 320 |
]
|
| 321 |
}
|
| 322 |
|
| 323 |
except Exception as e:
|
| 324 |
+
return {'error': f'Error generating answer: {str(e)}'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
def query_documents(self, query: str, top_k: int = 5) -> Dict[str, Any]:
|
| 327 |
+
"""OPTIMIZED: Main query function with minimal processing time"""
|
| 328 |
if not self.chunks_data:
|
| 329 |
+
return {'error': f'No documents indexed for session {self.session_id}'}
|
| 330 |
|
| 331 |
+
start_time = time.time()
|
|
|
|
| 332 |
|
| 333 |
+
# Fast query analysis
|
| 334 |
+
query_analysis = self.analyze_query_fast(query)
|
| 335 |
+
|
| 336 |
+
# Fast retrieval
|
| 337 |
+
retrieved_chunks = self.fast_retrieval(query_analysis, top_k)
|
| 338 |
|
| 339 |
if not retrieved_chunks:
|
| 340 |
return {
|
|
|
|
| 343 |
}
|
| 344 |
|
| 345 |
# Generate answer
|
| 346 |
+
result = self.generate_fast_answer(query, retrieved_chunks)
|
| 347 |
result['query_analysis'] = query_analysis
|
| 348 |
+
result['processing_time'] = time.time() - start_time
|
| 349 |
|
| 350 |
+
logger.info(f"Query processed in {result['processing_time']:.2f}s")
|
| 351 |
return result
|
| 352 |
|
| 353 |
+
# For backward compatibility - replace SessionRAG with OptimizedSessionRAG
|
| 354 |
+
SessionRAG = OptimizedSessionRAG
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|