Spaces:
Sleeping
Sleeping
parce whit annotations
Browse files- .gitignore +4 -0
- app.py +58 -23
- utils.py +0 -50
.gitignore
CHANGED
|
@@ -2,4 +2,8 @@
|
|
| 2 |
__pycache__/
|
| 3 |
.gradio
|
| 4 |
playground.py
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
resnet18-5c106cde.pth
|
|
|
|
| 2 |
__pycache__/
|
| 3 |
.gradio
|
| 4 |
playground.py
|
| 5 |
+
makeup.py
|
| 6 |
+
test.py
|
| 7 |
+
parsing_map_on_im.jpg
|
| 8 |
+
parsing_map_on_im.png
|
| 9 |
resnet18-5c106cde.pth
|
app.py
CHANGED
|
@@ -22,13 +22,13 @@
|
|
| 22 |
# - [BiSeNet] [https://github.com/CoinCheung/BiSeNet]
|
| 23 |
|
| 24 |
import gradio as gr
|
| 25 |
-
import
|
| 26 |
import torch
|
|
|
|
| 27 |
from PIL import Image
|
| 28 |
from huggingface_hub import hf_hub_download
|
| 29 |
-
|
| 30 |
from bisnet import BiSeNet
|
| 31 |
-
from utils import vis_parsing_maps, decode_segmentation_masks, image_to_tensor
|
| 32 |
|
| 33 |
REPO_ID = "leonelhs/faceparser"
|
| 34 |
MODEL_NAME = "79999_iter.pth"
|
|
@@ -40,30 +40,64 @@ model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_NAME)
|
|
| 40 |
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 41 |
model.eval()
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
def
|
| 45 |
-
prediction_mask = np.asarray(mask)
|
| 46 |
-
image = image.resize((512, 512), Image.BILINEAR)
|
| 47 |
-
dark_map, overlay = vis_parsing_maps(image, prediction_mask)
|
| 48 |
-
colormap = decode_segmentation_masks(dark_map)
|
| 49 |
-
return overlay, colormap
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def makeMask(image):
|
| 53 |
with torch.no_grad():
|
| 54 |
-
image = image.resize((512, 512), Image.BILINEAR)
|
| 55 |
input_tensor = image_to_tensor(image)
|
| 56 |
input_tensor = torch.unsqueeze(input_tensor, 0)
|
| 57 |
if torch.cuda.is_available():
|
| 58 |
input_tensor = input_tensor.cuda()
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
def predict(image):
|
| 64 |
-
mask = makeMask(image)
|
| 65 |
-
overlay, colormap = makeOverlay(image, mask)
|
| 66 |
-
return overlay
|
| 67 |
|
| 68 |
|
| 69 |
aboutme = r"""
|
|
@@ -93,7 +127,7 @@ with gr.Blocks(title="Face Parser") as app:
|
|
| 93 |
inp = gr.Image(type="pil", label="Upload Image")
|
| 94 |
btn_predict = gr.Button("Parse")
|
| 95 |
with gr.Column(scale=2):
|
| 96 |
-
out = gr.
|
| 97 |
|
| 98 |
btn_predict.click(predict, inputs=[inp], outputs=[out])
|
| 99 |
|
|
@@ -101,4 +135,5 @@ with gr.Blocks(title="Face Parser") as app:
|
|
| 101 |
with app.route("About this", "/about"):
|
| 102 |
gr.Markdown(aboutme)
|
| 103 |
|
| 104 |
-
app.launch()
|
|
|
|
|
|
| 22 |
# - [BiSeNet] [https://github.com/CoinCheung/BiSeNet]
|
| 23 |
|
| 24 |
import gradio as gr
|
| 25 |
+
import cv2
|
| 26 |
import torch
|
| 27 |
+
import numpy as np
|
| 28 |
from PIL import Image
|
| 29 |
from huggingface_hub import hf_hub_download
|
| 30 |
+
import torchvision.transforms as transforms
|
| 31 |
from bisnet import BiSeNet
|
|
|
|
| 32 |
|
| 33 |
REPO_ID = "leonelhs/faceparser"
|
| 34 |
MODEL_NAME = "79999_iter.pth"
|
|
|
|
| 40 |
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 41 |
model.eval()
|
| 42 |
|
| 43 |
+
part_colors = [
|
| 44 |
+
{"part": "background", "color": [255, 0, 0]},
|
| 45 |
+
{"part": "face", "color": [219, 79, 66]},
|
| 46 |
+
{"part": "right_brow", "color": [255, 170, 0]},
|
| 47 |
+
{"part": "left_brow", "color": [255, 0, 85]},
|
| 48 |
+
{"part": "right_eye", "color": [255, 0, 170]},
|
| 49 |
+
{"part": "left_eye", "color": [ 0, 255, 0]},
|
| 50 |
+
{"part": "glasses", "color": [ 85, 255, 0]},
|
| 51 |
+
{"part": "right_ear", "color": [170, 255, 0]},
|
| 52 |
+
{"part": "left_ear", "color": [ 0, 255, 85]},
|
| 53 |
+
{"part": "earrings", "color": [ 0, 255, 170]},
|
| 54 |
+
{"part": "nose", "color": [ 0, 0, 255]},
|
| 55 |
+
{"part": "teeth", "color": [ 85, 0, 255]},
|
| 56 |
+
{"part": "upper_lip", "color": [170, 0, 255]},
|
| 57 |
+
{"part": "lower_lip", "color": [ 0, 85, 255]},
|
| 58 |
+
{"part": "neck", "color": [ 0, 170, 255]},
|
| 59 |
+
{"part": "collar", "color": [255, 255, 0]},
|
| 60 |
+
{"part": "cloths", "color": [255, 255, 85]},
|
| 61 |
+
{"part": "hair", "color": [199, 21, 133]},
|
| 62 |
+
{"part": "crown", "color": [255, 0, 255]},
|
| 63 |
+
{"part": "extra20", "color": [255, 85, 255]},
|
| 64 |
+
{"part": "extra21", "color": [255, 170, 255]},
|
| 65 |
+
{"part": "extra22", "color": [ 0, 255, 255]},
|
| 66 |
+
{"part": "extra23", "color": [ 85, 255, 255]},
|
| 67 |
+
{"part": "extra24", "color": [170, 255, 255]},
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
def image_to_tensor(image):
|
| 71 |
+
return transforms.Compose([
|
| 72 |
+
transforms.ToTensor(),
|
| 73 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
| 74 |
+
])(image)
|
| 75 |
+
|
| 76 |
+
def parse_face(mask):
|
| 77 |
+
|
| 78 |
+
num_of_class = np.max(mask)
|
| 79 |
+
face_parts = []
|
| 80 |
+
|
| 81 |
+
for index in range(1, num_of_class + 1):
|
| 82 |
+
face_part = np.where(mask == index)
|
| 83 |
+
canvas = np.full((512, 512, 3), 255, dtype=np.uint8)
|
| 84 |
+
canvas[face_part[0], face_part[1], :] = part_colors[index]["color"]
|
| 85 |
+
canvas = cv2.cvtColor(canvas, cv2.COLOR_BGR2GRAY)
|
| 86 |
+
face_parts.append((canvas, part_colors[index]["part"]))
|
| 87 |
+
|
| 88 |
+
return face_parts
|
| 89 |
|
| 90 |
+
def predict(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
with torch.no_grad():
|
| 92 |
+
image = image.resize((512, 512), Image.Resampling.BILINEAR)
|
| 93 |
input_tensor = image_to_tensor(image)
|
| 94 |
input_tensor = torch.unsqueeze(input_tensor, 0)
|
| 95 |
if torch.cuda.is_available():
|
| 96 |
input_tensor = input_tensor.cuda()
|
| 97 |
+
mask = model(input_tensor)[0]
|
| 98 |
+
mask = mask.squeeze(0).cpu().numpy().argmax(0)
|
| 99 |
+
sections = parse_face(mask)
|
| 100 |
+
return image, sections
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
|
| 103 |
aboutme = r"""
|
|
|
|
| 127 |
inp = gr.Image(type="pil", label="Upload Image")
|
| 128 |
btn_predict = gr.Button("Parse")
|
| 129 |
with gr.Column(scale=2):
|
| 130 |
+
out = gr.AnnotatedImage(label="Face parsed annotated")
|
| 131 |
|
| 132 |
btn_predict.click(predict, inputs=[inp], outputs=[out])
|
| 133 |
|
|
|
|
| 135 |
with app.route("About this", "/about"):
|
| 136 |
gr.Markdown(aboutme)
|
| 137 |
|
| 138 |
+
app.launch(share=False, debug=True, show_error=True, mcp_server=True, pwa=True)
|
| 139 |
+
app.queue()
|
utils.py
DELETED
|
@@ -1,50 +0,0 @@
|
|
| 1 |
-
import cv2
|
| 2 |
-
import numpy as np
|
| 3 |
-
import torchvision.transforms as transforms
|
| 4 |
-
|
| 5 |
-
# Colors for all 20 parts
|
| 6 |
-
part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 0, 85], [255, 0, 170],
|
| 7 |
-
[0, 255, 0], [85, 255, 0], [170, 255, 0], [0, 255, 85], [0, 255, 170],
|
| 8 |
-
[0, 0, 255], [85, 0, 255], [170, 0, 255], [0, 85, 255], [0, 170, 255],
|
| 9 |
-
[255, 255, 0], [255, 255, 85], [255, 255, 170], [255, 0, 255], [255, 85, 255],
|
| 10 |
-
[255, 170, 255], [0, 255, 255], [85, 255, 255], [170, 255, 255]]
|
| 11 |
-
|
| 12 |
-
colormap = np.array(part_colors, dtype=np.uint8)
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
def image_to_tensor(image):
|
| 16 |
-
return transforms.Compose([
|
| 17 |
-
transforms.ToTensor(),
|
| 18 |
-
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
| 19 |
-
])(image)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def decode_segmentation_masks(mask, n_classes=20):
|
| 23 |
-
red = np.zeros_like(mask).astype(np.uint8)
|
| 24 |
-
green = np.zeros_like(mask).astype(np.uint8)
|
| 25 |
-
blue = np.zeros_like(mask).astype(np.uint8)
|
| 26 |
-
for chanel in range(0, n_classes):
|
| 27 |
-
idx = mask == chanel
|
| 28 |
-
red[idx] = colormap[chanel, 0]
|
| 29 |
-
green[idx] = colormap[chanel, 1]
|
| 30 |
-
blue[idx] = colormap[chanel, 2]
|
| 31 |
-
return np.stack([red, green, blue], axis=2)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def vis_parsing_maps(image: np.array, parsing_anno, stride=1):
|
| 35 |
-
image = np.array(image)
|
| 36 |
-
vis_im = image.copy().astype(np.uint8)
|
| 37 |
-
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
|
| 38 |
-
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST)
|
| 39 |
-
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255
|
| 40 |
-
|
| 41 |
-
num_of_class = np.max(vis_parsing_anno)
|
| 42 |
-
|
| 43 |
-
for pi in range(1, num_of_class + 1):
|
| 44 |
-
index = np.where(vis_parsing_anno == pi)
|
| 45 |
-
vis_parsing_anno_color[index[0], index[1], :] = part_colors[pi]
|
| 46 |
-
|
| 47 |
-
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
|
| 48 |
-
vis_im = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0)
|
| 49 |
-
|
| 50 |
-
return vis_parsing_anno, vis_im
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|