Spaces:
Build error
Build error
Create app.py
Browse files
app.py
CHANGED
|
@@ -1,177 +1 @@
|
|
| 1 |
-
|
| 2 |
-
from annotated_text import annotated_text
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
from transformers import pipeline
|
| 6 |
-
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
| 7 |
-
|
| 8 |
-
import json
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
st.set_page_config(layout="wide")
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
model = AutoModelForTokenClassification.from_pretrained("models/lusa")
|
| 16 |
-
tokenizer = AutoTokenizer.from_pretrained("models/lusa", model_max_length=512)
|
| 17 |
-
tagger = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy='first') #aggregation_strategy='max'
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
def aggregate_subwords(input_tokens, labels):
|
| 22 |
-
new_inputs = []
|
| 23 |
-
new_labels = []
|
| 24 |
-
current_word = ""
|
| 25 |
-
current_label = ""
|
| 26 |
-
for i, token in enumerate(input_tokens):
|
| 27 |
-
label = labels[i]
|
| 28 |
-
# Handle subwords
|
| 29 |
-
if token.startswith('##'):
|
| 30 |
-
current_word += token[2:]
|
| 31 |
-
else:
|
| 32 |
-
# Finish previous word
|
| 33 |
-
if current_word:
|
| 34 |
-
new_inputs.append(current_word)
|
| 35 |
-
new_labels.append(current_label)
|
| 36 |
-
# Start new word
|
| 37 |
-
current_word = token
|
| 38 |
-
current_label = label
|
| 39 |
-
new_inputs.append(current_word)
|
| 40 |
-
new_labels.append(current_label)
|
| 41 |
-
return new_inputs, new_labels
|
| 42 |
-
|
| 43 |
-
def annotateTriggers(line):
|
| 44 |
-
line = line.strip()
|
| 45 |
-
inputs = tokenizer(line, return_tensors="pt")
|
| 46 |
-
input_tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
|
| 47 |
-
|
| 48 |
-
with torch.no_grad():
|
| 49 |
-
logits = model(**inputs).logits
|
| 50 |
-
|
| 51 |
-
predictions = torch.argmax(logits, dim=2)
|
| 52 |
-
predicted_token_class = [model.config.id2label[t.item()] for t in predictions[0]]
|
| 53 |
-
input_tokens, predicted_token_class = aggregate_subwords(input_tokens,predicted_token_class)
|
| 54 |
-
token_labels = []
|
| 55 |
-
current_entity = ''
|
| 56 |
-
for i, label in enumerate(predicted_token_class):
|
| 57 |
-
token = input_tokens[i]
|
| 58 |
-
if label == 'O':
|
| 59 |
-
token_labels.append((token, 'O', ''))
|
| 60 |
-
current_entity = ''
|
| 61 |
-
elif label.startswith('B-'):
|
| 62 |
-
current_entity = label[2:]
|
| 63 |
-
token_labels.append((token, 'B', current_entity))
|
| 64 |
-
elif label.startswith('I-'):
|
| 65 |
-
if current_entity == '':
|
| 66 |
-
raise ValueError(f"Invalid label sequence: {predicted_token_class}")
|
| 67 |
-
token_labels[-1] = (token_labels[-1][0] + f" {token}", 'I', current_entity)
|
| 68 |
-
else:
|
| 69 |
-
raise ValueError(f"Invalid label: {label}")
|
| 70 |
-
return token_labels[1:-1]
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
def joinEntities(entities):
|
| 77 |
-
|
| 78 |
-
joined_entities = []
|
| 79 |
-
i = 0
|
| 80 |
-
while i < len(entities):
|
| 81 |
-
curr_entity = entities[i]
|
| 82 |
-
if curr_entity['entity'][0] == 'B':
|
| 83 |
-
label = curr_entity['entity'][2:]
|
| 84 |
-
j = i + 1
|
| 85 |
-
while j < len(entities) and entities[j]['entity'][0] == 'I':
|
| 86 |
-
j += 1
|
| 87 |
-
joined_entity = {
|
| 88 |
-
'entity': label,
|
| 89 |
-
'score': max(e['score'] for e in entities[i:j]),
|
| 90 |
-
'index': min(e['index'] for e in entities[i:j]),
|
| 91 |
-
'word': ' '.join(e['word'] for e in entities[i:j]),
|
| 92 |
-
'start': entities[i]['start'],
|
| 93 |
-
'end': entities[j-1]['end']
|
| 94 |
-
}
|
| 95 |
-
joined_entities.append(joined_entity)
|
| 96 |
-
i = j - 1
|
| 97 |
-
i += 1
|
| 98 |
-
return joined_entities
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
import pysbd
|
| 103 |
-
seg = pysbd.Segmenter(language="es", clean=False)
|
| 104 |
-
|
| 105 |
-
def sent_tokenize(text):
|
| 106 |
-
return seg.segment(text)
|
| 107 |
-
|
| 108 |
-
def getSentenceIndex(lines,span):
|
| 109 |
-
i = 1
|
| 110 |
-
sum = len(lines[0])
|
| 111 |
-
while sum < span:
|
| 112 |
-
sum += len(lines[i])
|
| 113 |
-
i = i + 1
|
| 114 |
-
return i - 1
|
| 115 |
-
|
| 116 |
-
def generateContext(text, window,span):
|
| 117 |
-
lines = sent_tokenize(text)
|
| 118 |
-
index = getSentenceIndex(lines,span)
|
| 119 |
-
text = " ".join(lines[max(0,index-window):index+window +1])
|
| 120 |
-
return text
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
def annotateEvents(text,squad,window):
|
| 124 |
-
text = text.strip()
|
| 125 |
-
ner_results = tagger(text)
|
| 126 |
-
#print(ner_results)
|
| 127 |
-
#ner_results = joinEntities(ner_results)
|
| 128 |
-
i = 0
|
| 129 |
-
#exit()
|
| 130 |
-
while i < len(ner_results):
|
| 131 |
-
ner_results[i]["entity"] = ner_results[i]["entity_group"].lstrip("B-")
|
| 132 |
-
ner_results[i]["entity"] = ner_results[i]["entity_group"].lstrip("I-")
|
| 133 |
-
i = i + 1
|
| 134 |
-
|
| 135 |
-
events = []
|
| 136 |
-
for trigger in ner_results:
|
| 137 |
-
tipo = trigger["entity_group"]
|
| 138 |
-
context = generateContext(text,window,trigger["start"])
|
| 139 |
-
event = {
|
| 140 |
-
"trigger":trigger["word"],
|
| 141 |
-
"type": tipo,
|
| 142 |
-
"score": trigger["score"],
|
| 143 |
-
"context": context,
|
| 144 |
-
}
|
| 145 |
-
events.append(event)
|
| 146 |
-
return events
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
#"A Joana foi atacada pelo João nas ruas do Porto, com uma faca."
|
| 150 |
-
|
| 151 |
-
st.title('Extract Events')
|
| 152 |
-
|
| 153 |
-
options = ["O presidente da Federação Haitiana de Futebol, Yves Jean-Bart, foi banido para sempre de toda a atividade ligada ao futebol, por ter sido considerado culpado de abuso sexual sistemático de jogadoras, anunciou hoje a FIFA."]
|
| 154 |
-
|
| 155 |
-
option = st.selectbox(
|
| 156 |
-
'Select examples',
|
| 157 |
-
options)
|
| 158 |
-
#option = options [index]
|
| 159 |
-
line = st.text_area("Insert Text",option)
|
| 160 |
-
|
| 161 |
-
st.button('Run')
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
st.sidebar.write("## Hyperparameters :gear:")
|
| 165 |
-
window = 1
|
| 166 |
-
if line != "":
|
| 167 |
-
st.header("Triggers:")
|
| 168 |
-
triggerss = annotateTriggers(line)
|
| 169 |
-
annotated_text(*[word[0]+" " if word[1] == 'O' else (word[0]+" ",word[2]) for word in triggerss ])
|
| 170 |
-
|
| 171 |
-
eventos_1 = annotateEvents(line,1,window)
|
| 172 |
-
eventos_2 = annotateEvents(line,2,window)
|
| 173 |
-
|
| 174 |
-
for mention1, mention2 in zip(eventos_1,eventos_2):
|
| 175 |
-
st.text(f"| Trigger: {mention1['trigger']:20} | Type: {mention1['type']:10} | Score: {str(round(mention1['score'],3)):5} |")
|
| 176 |
-
st.markdown("""---""")
|
| 177 |
-
|
|
|
|
| 1 |
+
test
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|