# app.py # Run: python app.py # Open http://localhost:7860 import re, random, torch, torch.nn as nn, torch.nn.functional as F from flask import Flask, request, jsonify # ---------------- Dataset ---------------- DATA_QA = [ ("What is the capital of India?", "New Delhi."), ("What is the capital of USA?", "Washington, D.C."), ("What is the capital of France?", "Paris."), ("What is the capital of Japan?", "Tokyo."), ("What is the capital of China?", "Beijing."), ("What is the capital of Russia?", "Moscow."), ("What is the capital of Brazil?", "Brasilia."), ("What is the capital of Canada?", "Ottawa."), ] # ---------------- Tokenizer ---------------- PUNCT = ["?", ".", ",", ":", ";", "!", "/"] SPECIALS = ["", "", "", ""] def basic_tokenize(text): text = text.lower().strip() for p in PUNCT: text = text.replace(p, f" {p} ") return text.split() def build_vocab(pairs): freq = {} for q,a in pairs: for t in basic_tokenize("q: "+q) + basic_tokenize("a: "+a): freq[t] = freq.get(t,0)+1 itos = list(SPECIALS) for t in sorted(freq.keys()): if t not in SPECIALS: itos.append(t) stoi = {t:i for i,t in enumerate(itos)} return stoi, itos stoi, itos = build_vocab(DATA_QA) PAD,BOS,EOS,UNK = [stoi[s] for s in SPECIALS] def encode(text): return [stoi.get(t,UNK) for t in basic_tokenize(text)] def wrap_bos_eos(tokens): return [BOS]+tokens+[EOS] # ---------------- Model ---------------- class TinyTransformer(nn.Module): def __init__(self,vocab_size,d_model=64,n_heads=2,n_layers=2,d_ff=128,max_len=64): super().__init__() self.tok_emb=nn.Embedding(vocab_size,d_model) self.pos_emb=nn.Embedding(max_len,d_model) enc_layer=nn.TransformerEncoderLayer(d_model,n_heads,d_ff,dropout=0.1,batch_first=True) self.transformer=nn.TransformerEncoder(enc_layer,n_layers) self.ln=nn.LayerNorm(d_model) self.head=nn.Linear(d_model,vocab_size) self.max_len=max_len def causal_mask(self,T,device): return torch.triu(torch.ones(T,T,device=device),1)==1 def forward(self,idx): B,T=idx.size() pos=torch.arange(0,T,device=idx.device).unsqueeze(0).expand(B,T) x=self.tok_emb(idx)+self.pos_emb(pos) x=self.transformer(x,mask=self.causal_mask(T,idx.device)) x=self.ln(x) return self.head(x) # ---------------- Training ---------------- def make_sequences(): seqs=[] for q,a in DATA_QA: seq=wrap_bos_eos(encode("q: "+q)+encode("a: "+a)) seqs.append(seq) return seqs def train_model(): device=torch.device("cpu") model=TinyTransformer(len(itos)).to(device) opt=torch.optim.AdamW(model.parameters(),lr=3e-3) seqs=make_sequences() for ep in range(50): random.shuffle(seqs) for s in seqs: x=torch.tensor(s[:-1]).unsqueeze(0) y=torch.tensor(s[1:]).unsqueeze(0) logits=model(x) loss=F.cross_entropy(logits.view(-1,len(itos)),y.view(-1),ignore_index=PAD) opt.zero_grad(); loss.backward(); opt.step() return model model=train_model() model.eval() # ---------------- Inference ---------------- def generate_answer(question,max_new_tokens=20): q_ids=encode("q: "+question) a_prefix=encode("a:") tokens=wrap_bos_eos(q_ids+a_prefix)[:-1] x=torch.tensor(tokens).unsqueeze(0) for _ in range(max_new_tokens): if x.size(1)>=model.max_len: break logits=model(x) next_id=logits[:,-1,:].argmax(-1).item() if next_id==EOS: break x=torch.cat([x,torch.tensor([[next_id]])],1) gen_ids=x.squeeze(0).tolist() prefix_len=1+len(q_ids)+len(a_prefix) answer_ids=gen_ids[prefix_len:] return " ".join(itos[i] for i in answer_ids if i not in (PAD,BOS,EOS)) # ---------------- Flask App ---------------- app=Flask(__name__) BAN_REGEX=re.compile(r"(?i)\bsex\b") @app.route("/") def index(): return """ Chatbot

SLM Chatbot

""" @app.route("/answer",methods=["POST"]) def answer(): q=request.json.get("q","") if BAN_REGEX.search(q): return jsonify({"answer":"banned"}) return jsonify({"answer":generate_answer(q)}) if __name__=="__main__": app.run(host="0.0.0.0",port=7860)