File size: 14,092 Bytes
3d6cc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
"""
Schemas for fine-tuning pipeline configuration and management.

This module contains Pydantic models for training jobs, configurations,
and evaluation results.
"""

from datetime import datetime
from enum import Enum
from typing import Any, Dict, List, Optional
from uuid import UUID

from pydantic import BaseModel, Field, field_validator


class TrainingStatus(str, Enum):
    """Status of a training job."""

    PENDING = "pending"
    RUNNING = "running"
    COMPLETED = "completed"
    FAILED = "failed"
    CANCELLED = "cancelled"


class TrainingStrategy(str, Enum):
    """Training strategy type."""

    SUPERVISED = "supervised"  # Supervised fine-tuning on good responses
    RLHF = "rlhf"  # Reinforcement Learning from Human Feedback
    DPO = "dpo"  # Direct Preference Optimization


class ModelType(str, Enum):
    """Type of model to train."""

    LLM = "llm"  # Language model for generation
    MODERATION = "moderation"  # Toxicity/moderation model


class DatasetSplit(BaseModel):
    """Dataset split configuration."""

    train_ratio: float = Field(
        default=0.8,
        ge=0.1,
        le=0.9,
        description="Ratio of data for training",
    )
    validation_ratio: float = Field(
        default=0.1,
        ge=0.05,
        le=0.3,
        description="Ratio of data for validation",
    )
    test_ratio: float = Field(
        default=0.1,
        ge=0.05,
        le=0.3,
        description="Ratio of data for testing",
    )

    @field_validator("test_ratio")
    @classmethod
    def validate_ratios_sum_to_one(cls, v, info):
        """Validate that all ratios sum to 1.0."""
        if hasattr(info, "data"):
            train_ratio = info.data.get("train_ratio", 0.8)
            validation_ratio = info.data.get("validation_ratio", 0.1)
            total = train_ratio + validation_ratio + v
            if abs(total - 1.0) > 0.001:
                raise ValueError("Train, validation, and test ratios must sum to 1.0")
        return v


class TrainingConfig(BaseModel):
    """Configuration for training job."""

    # Model configuration
    model_name: str = Field(
        ...,
        description="Base model name or path",
        min_length=1,
        max_length=200,
    )
    model_type: ModelType = Field(
        default=ModelType.LLM,
        description="Type of model to train",
    )

    # Training strategy
    strategy: TrainingStrategy = Field(
        default=TrainingStrategy.SUPERVISED,
        description="Training strategy to use",
    )

    # Dataset configuration
    min_quality_score: float = Field(
        default=0.7,
        ge=0.0,
        le=1.0,
        description="Minimum quality score for training data",
    )
    require_feedback: bool = Field(
        default=True,
        description="Only use responses with human feedback",
    )
    feedback_types: List[str] = Field(
        default=["good"],
        description="Feedback types to include in training",
    )
    max_toxicity_score: float = Field(
        default=0.3,
        ge=0.0,
        le=1.0,
        description="Maximum toxicity score for training data",
    )
    dataset_split: DatasetSplit = Field(
        default_factory=DatasetSplit,
        description="Dataset split configuration",
    )

    # Training hyperparameters
    learning_rate: float = Field(
        default=2e-5,
        ge=1e-6,
        le=1e-3,
        description="Learning rate for training",
    )
    batch_size: int = Field(
        default=8,
        ge=1,
        le=128,
        description="Training batch size",
    )
    gradient_accumulation_steps: int = Field(
        default=4,
        ge=1,
        le=32,
        description="Gradient accumulation steps",
    )
    num_epochs: int = Field(
        default=3,
        ge=1,
        le=20,
        description="Number of training epochs",
    )
    max_length: int = Field(
        default=512,
        ge=128,
        le=2048,
        description="Maximum sequence length",
    )
    warmup_steps: int = Field(
        default=100,
        ge=0,
        le=1000,
        description="Number of warmup steps",
    )
    weight_decay: float = Field(
        default=0.01,
        ge=0.0,
        le=0.1,
        description="Weight decay for regularization",
    )

    # Training options
    use_lora: bool = Field(
        default=True,
        description="Use LoRA (Low-Rank Adaptation) for efficient fine-tuning",
    )
    lora_rank: int = Field(
        default=16,
        ge=4,
        le=128,
        description="LoRA rank parameter",
    )
    lora_alpha: int = Field(
        default=32,
        ge=8,
        le=256,
        description="LoRA alpha parameter",
    )
    use_mixed_precision: bool = Field(
        default=True,
        description="Use mixed precision training",
    )
    save_steps: int = Field(
        default=500,
        ge=50,
        le=5000,
        description="Save checkpoint every N steps",
    )
    eval_steps: int = Field(
        default=100,
        ge=10,
        le=1000,
        description="Evaluate every N steps",
    )

    # Experiment tracking
    experiment_name: Optional[str] = Field(
        None,
        max_length=100,
        description="Name for experiment tracking",
    )
    tags: List[str] = Field(
        default_factory=list,
        description="Tags for organizing experiments",
    )

    model_config = {
        "json_schema_extra": {
            "example": {
                "model_name": "microsoft/DialoGPT-small",
                "model_type": "llm",
                "strategy": "supervised",
                "min_quality_score": 0.8,
                "require_feedback": True,
                "feedback_types": ["good"],
                "learning_rate": 2e-5,
                "batch_size": 8,
                "num_epochs": 3,
                "use_lora": True,
                "experiment_name": "quality-improvement-v1",
            }
        }
    }


class TrainingJobRequest(BaseModel):
    """Request to start a training job."""

    config: TrainingConfig = Field(..., description="Training configuration")
    description: Optional[str] = Field(
        None,
        max_length=500,
        description="Description of the training job",
    )

    model_config = {
        "json_schema_extra": {
            "example": {
                "config": {
                    "model_name": "microsoft/DialoGPT-small",
                    "strategy": "supervised",
                    "learning_rate": 2e-5,
                    "batch_size": 8,
                    "num_epochs": 3,
                },
                "description": "Fine-tune model on high-quality responses",
            }
        }
    }


class TrainingMetrics(BaseModel):
    """Training metrics and statistics."""

    # Training progress
    current_epoch: int = Field(..., description="Current training epoch")
    total_epochs: int = Field(..., description="Total number of epochs")
    current_step: int = Field(..., description="Current training step")
    total_steps: int = Field(..., description="Total number of steps")
    progress_percentage: float = Field(
        ..., ge=0.0, le=100.0, description="Training progress percentage"
    )

    # Loss metrics
    train_loss: Optional[float] = Field(None, description="Current training loss")
    eval_loss: Optional[float] = Field(None, description="Current evaluation loss")
    best_eval_loss: Optional[float] = Field(None, description="Best evaluation loss so far")

    # Performance metrics
    learning_rate: Optional[float] = Field(None, description="Current learning rate")
    grad_norm: Optional[float] = Field(None, description="Gradient norm")
    examples_per_second: Optional[float] = Field(None, description="Training speed")

    # Time metrics
    elapsed_time: Optional[float] = Field(None, description="Elapsed time in seconds")
    estimated_remaining: Optional[float] = Field(
        None, description="Estimated remaining time in seconds"
    )

    model_config = {
        "json_schema_extra": {
            "example": {
                "current_epoch": 2,
                "total_epochs": 3,
                "current_step": 450,
                "total_steps": 600,
                "progress_percentage": 75.0,
                "train_loss": 0.85,
                "eval_loss": 0.92,
                "best_eval_loss": 0.89,
                "learning_rate": 1.5e-5,
                "examples_per_second": 12.5,
                "elapsed_time": 1800.0,
                "estimated_remaining": 600.0,
            }
        }
    }


class EvaluationResult(BaseModel):
    """Results from model evaluation."""

    # Standard metrics
    perplexity: Optional[float] = Field(None, description="Model perplexity")
    bleu_score: Optional[float] = Field(None, description="BLEU score")
    rouge_l: Optional[float] = Field(None, description="ROUGE-L score")

    # Custom metrics
    avg_quality_score: Optional[float] = Field(None, description="Average quality score")
    avg_toxicity_score: Optional[float] = Field(None, description="Average toxicity score")
    response_length_avg: Optional[float] = Field(None, description="Average response length")

    # Sample evaluations
    sample_inputs: List[str] = Field(default_factory=list, description="Sample input messages")
    sample_outputs: List[str] = Field(default_factory=list, description="Sample generated outputs")
    sample_scores: List[float] = Field(default_factory=list, description="Sample quality scores")

    model_config = {
        "json_schema_extra": {
            "example": {
                "perplexity": 15.2,
                "bleu_score": 0.65,
                "rouge_l": 0.72,
                "avg_quality_score": 0.83,
                "avg_toxicity_score": 0.05,
                "response_length_avg": 45.2,
                "sample_inputs": ["How to set up a bot?"],
                "sample_outputs": ["To set up a bot, follow these steps..."],
                "sample_scores": [0.9],
            }
        }
    }


class TrainingJob(BaseModel):
    """Training job information."""

    id: UUID = Field(..., description="Training job ID")
    status: TrainingStatus = Field(..., description="Current job status")
    config: TrainingConfig = Field(..., description="Training configuration")
    description: Optional[str] = Field(None, description="Job description")

    # Timestamps
    created_at: datetime = Field(..., description="Job creation time")
    started_at: Optional[datetime] = Field(None, description="Job start time")
    completed_at: Optional[datetime] = Field(None, description="Job completion time")

    # Progress and metrics
    metrics: Optional[TrainingMetrics] = Field(None, description="Training metrics")
    evaluation: Optional[EvaluationResult] = Field(None, description="Evaluation results")

    # Output information
    model_path: Optional[str] = Field(None, description="Path to trained model")
    model_version: Optional[str] = Field(None, description="Model version identifier")
    logs_path: Optional[str] = Field(None, description="Path to training logs")

    # Error information
    error_message: Optional[str] = Field(None, description="Error message if failed")
    error_details: Optional[Dict[str, Any]] = Field(None, description="Detailed error information")

    model_config = {
        "from_attributes": True,
        "json_schema_extra": {
            "example": {
                "id": "123e4567-e89b-12d3-a456-426614174000",
                "status": "running",
                "config": {
                    "model_name": "microsoft/DialoGPT-small",
                    "strategy": "supervised",
                    "learning_rate": 2e-5,
                },
                "description": "Quality improvement training",
                "created_at": "2025-01-07T10:00:00Z",
                "started_at": "2025-01-07T10:05:00Z",
                "model_version": "v1.2.0",
            }
        },
    }


class TrainingJobList(BaseModel):
    """List of training jobs."""

    jobs: List[TrainingJob] = Field(..., description="List of training jobs")
    total: int = Field(..., description="Total number of jobs")
    limit: int = Field(..., description="Limit used in query")
    offset: int = Field(..., description="Offset used in query")

    model_config = {
        "json_schema_extra": {
            "example": {
                "jobs": [],
                "total": 15,
                "limit": 10,
                "offset": 0,
            }
        }
    }


class ModelDeployRequest(BaseModel):
    """Request to deploy a trained model."""

    job_id: UUID = Field(..., description="Training job ID")
    model_type: ModelType = Field(..., description="Type of model to deploy")
    set_as_default: bool = Field(default=True, description="Set as default model for the service")
    backup_current: bool = Field(default=True, description="Backup current model before deployment")

    model_config = {
        "json_schema_extra": {
            "example": {
                "job_id": "123e4567-e89b-12d3-a456-426614174000",
                "model_type": "llm",
                "set_as_default": True,
                "backup_current": True,
            }
        }
    }


class ModelDeployResponse(BaseModel):
    """Response from model deployment."""

    success: bool = Field(..., description="Whether deployment was successful")
    model_version: str = Field(..., description="Deployed model version")
    previous_version: Optional[str] = Field(None, description="Previous model version")
    backup_path: Optional[str] = Field(None, description="Path to backup model")
    message: str = Field(..., description="Deployment status message")

    model_config = {
        "json_schema_extra": {
            "example": {
                "success": True,
                "model_version": "v1.2.0",
                "previous_version": "v1.1.5",
                "backup_path": "/models/backups/llm_v1.1.5",
                "message": "Model deployed successfully",
            }
        }
    }