Spaces:
Running
Running
File size: 8,964 Bytes
08787db 92f382b 08787db 92f382b ab8d2ed 08787db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import os
import tempfile
from pathlib import Path
import gradio as gr
try:
import piano_svsep
except ImportError as exc:
raise ImportError(
"The piano_svsep package is required. Activate the piano-engraving "
"conda environment or install dependencies from requirements.txt."
) from exc
import partitura as pt
import partitura.score as spt
import numpy as np
import torch
import torch_geometric as pyg
from piano_svsep.models.pl_models import PLPianoSVSep
from piano_svsep.utils.visualization import save_pyg_graph_as_json
from piano_svsep.utils import (
hetero_graph_from_note_array,
get_vocsep_features,
score_graph_to_pyg,
HeteroScoreGraph,
remove_ties_acros_barlines,
get_measurewise_pot_edges,
get_pot_chord_edges,
get_truth_chords_edges,
get_measurewise_truth_edges,
assign_voices
)
def prepare_score(path_to_score, include_original=True):
"""
Prepare the score for voice separation.
Parameters
----------
path_to_score: str
Path to the score file. Partitura can handle different formats such as musicxml, mei, etc.
include_original: bool, optional
Whether to include the original voice and chord assignments in the graph. Defaults to True.
Mostly used for visualization purposes.
Returns
-------
pg_graph: torch_geometric.data.HeteroData
PyG HeteroData object containing the score graph.
score: partitura.score.Score
Partitura Score object.
tie_couples: np.ndarray
Array of tied notes.
"""
# Load the score
score = pt.load_score(path_to_score, force_note_ids=True)
if len(score) > 1:
score = pt.score.Score(pt.score.merge_parts(score.parts))
# Preprocess score for voice separation
tie_couples = remove_ties_acros_barlines(score, return_ids=True)
# Remove beams
for part in score:
beams = list(part.iter_all(pt.score.Beam))
for beam in beams:
beam_notes = beam.notes
for note in beam_notes:
note.beam = None
part.remove(beam)
# Remove rests
for part in score:
rests = list(part.iter_all(pt.score.Rest))
for rest in rests:
part.remove(rest)
# Remove Tuplets that contain rests
tuplets = list(part.iter_all(pt.score.Tuplet))
for tuplet in tuplets:
if isinstance(tuplet.start_note, pt.score.Rest) or isinstance(tuplet.end_note, pt.score.Rest):
part.remove(tuplet)
# Remove grace notes
for part in score:
grace_notes = list(part.iter_all(pt.score.GraceNote))
for grace_note in grace_notes:
part.remove(grace_note)
# Create note array with necessary features
note_array = score[0].note_array(
include_time_signature=True,
include_grace_notes=True, # this is just to check that there are not grace notes left
include_staff=True,
)
# Get the measure number for each note in the note array
mn_map = score[np.array([p._quarter_durations[0] for p in score]).argmax()].measure_number_map
note_measures = mn_map(note_array["onset_div"])
# Create heterogeneous graph from note array
nodes, edges = hetero_graph_from_note_array(note_array, pot_edge_dist=0)
note_features = get_vocsep_features(note_array)
hg = HeteroScoreGraph(
note_features,
edges,
name="test_graph",
labels=None,
note_array=note_array,
)
# Get potential edges
pot_edges = get_measurewise_pot_edges(note_array, note_measures)
pot_chord_edges = get_pot_chord_edges(note_array, hg.get_edges_of_type("onset").numpy())
setattr(hg, "pot_edges", torch.tensor(pot_edges))
setattr(hg, "pot_chord_edges", torch.tensor(pot_chord_edges))
if include_original:
# Get truth edges, also called truth when original voice assignment is wrong.
truth_chords_edges = get_truth_chords_edges(note_array, pot_chord_edges)
polyphonic_truth_edges = get_measurewise_truth_edges(note_array, note_measures)
setattr(hg, "truth_chord_edges", torch.tensor(truth_chords_edges).long())
setattr(hg, "truth_edges", torch.tensor(polyphonic_truth_edges).long())
# Convert score graph to PyG graph
pg_graph = score_graph_to_pyg(hg)
return pg_graph, score, tie_couples
def predict_voice(path_to_model, path_to_score, save_path=None):
"""
Predict the voice assignment for a given score using a pre-trained model.
Parameters
----------
path_to_model: str
Path to the pre-trained model checkpoint.
path_to_score: str
Path to the score file. Partitura can handle different formats such as musicxml, mei, etc.
save_path: str, optional
Path to save the predicted score. If None, the predicted score will be saved in the same directory as the input score with '_pred' appended to the filename. Defaults to None.
Returns
-------
None
Updates are made to the score object and saved to the specified path.
"""
# Load the model
pl_model = PLPianoSVSep.load_from_checkpoint(path_to_model, map_location="cpu", strict=False, weights_only=False)
# Prepare the score
pg_graph, score, tied_notes = prepare_score(path_to_score)
# Batch for compatibility
pg_graph = pyg.data.Batch.from_data_list([pg_graph])
# predict the voice assignment
with torch.no_grad():
pl_model.module.eval()
pred_voices, pred_staff, pg_graph = pl_model.predict_step(pg_graph, return_graph=True)
# Partitura processing for visualization
part = score[0]
save_path = save_path if save_path is not None else os.path.splitext(path_to_score)[0] + "_pred.mei"
pg_graph.name = os.path.splitext(os.path.basename(save_path))[0]
save_pyg_graph_as_json(pg_graph, ids=part.note_array()["id"], path=os.path.dirname(save_path))
assign_voices(part, pred_voices, pred_staff)
tie_notes_over_measures(part, tied_notes)
spt.fill_rests(part, measurewise=True)
spt.infer_beaming(part)
print("Saving corrected score to", save_path)
if save_path.endswith(".mei"):
pt.save_mei(part,save_path)
elif save_path.endswith(".musicxml") or save_path.endswith(".xml"):
pt.save_musicxml(part, save_path)
else:
raise ValueError("Unsupported file format. Please use .mei or .musicxml/.xml")
def tie_notes_over_measures(part, tied_notes):
for src, dst in tied_notes.T:
src_note = None
dst_note = None
for note in part.notes_tied:
if note.id == dst:
dst_note = note
break
for note in part.notes_tied:
if note.id == src:
src_note = note
break
if src_note is not None and dst_note is not None:
src_note.tie_next = dst_note
dst_note.tie_prev = src_note
DEFAULT_MODEL_PATH = Path(__file__).resolve().parent / "model.ckpt"
def run_prediction(score_path: str | None, model_path: str | None):
"""Run voice prediction and return the path to the generated MEI file."""
if not score_path:
return None, "Please upload a score file first."
model_to_use = (model_path or "").strip() or str(DEFAULT_MODEL_PATH)
if not Path(model_to_use).exists():
return None, f"Model checkpoint not found at: {model_to_use}"
input_path = Path(score_path)
tmp_dir = Path(tempfile.mkdtemp(prefix="svsep_pred_"))
output_path = tmp_dir / f"{input_path.stem}_pred.musicxml"
try:
predict_voice(model_to_use, str(input_path), str(output_path))
except Exception as exc: # pragma: no cover - shown directly in UI
return None, f"Error during prediction: {exc}"
return str(output_path), f"Saved prediction to: {output_path}"
with gr.Blocks(title="Piano SVSep Voice Separation") as demo:
gr.Markdown(
"## Piano SVSep Voice Separation\n"
"Upload a MusicXML/MEI score and get back an MEI file with predicted voices."
)
with gr.Row():
with gr.Column():
score_input = gr.File(
label="Score file (.musicxml / .xml / .mei)",
file_types=[".musicxml", ".xml", ".mei"],
type="filepath",
)
model_input = gr.Textbox(
label="Model checkpoint path",
value=str(DEFAULT_MODEL_PATH),
placeholder="Path to model.ckpt",
)
run_button = gr.Button("Predict voices")
with gr.Column():
output_file = gr.File(label="Predicted MusicXML (download)")
status_box = gr.Textbox(label="Status", interactive=False)
run_button.click(
fn=run_prediction,
inputs=[score_input, model_input],
outputs=[output_file, status_box],
)
if __name__ == "__main__":
demo.launch()
|