Spaces:
No application file
No application file
Upload errant_gec.py with huggingface_hub
Browse files- errant_gec.py +225 -0
errant_gec.py
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""ERRANT metric for Grammatical Error Correction evaluation.
|
| 2 |
+
|
| 3 |
+
This metric uses the ERRANT (ERRor ANnotation Toolkit) to evaluate
|
| 4 |
+
grammatical error correction systems by comparing edit operations
|
| 5 |
+
between source, prediction, and reference sentences.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import datasets
|
| 9 |
+
import evaluate
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
_CITATION = """\
|
| 13 |
+
@inproceedings{bryant-etal-2017-automatic,
|
| 14 |
+
title = "Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction",
|
| 15 |
+
author = "Bryant, Christopher and
|
| 16 |
+
Felice, Mariano and
|
| 17 |
+
Briscoe, Ted",
|
| 18 |
+
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
| 19 |
+
month = jul,
|
| 20 |
+
year = "2017",
|
| 21 |
+
address = "Vancouver, Canada",
|
| 22 |
+
publisher = "Association for Computational Linguistics",
|
| 23 |
+
url = "https://aclanthology.org/P17-1074",
|
| 24 |
+
doi = "10.18653/v1/P17-1074",
|
| 25 |
+
pages = "793--805",
|
| 26 |
+
}
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
_DESCRIPTION = """\
|
| 30 |
+
ERRANT (ERRor ANnotation Toolkit) is a metric for evaluating grammatical error
|
| 31 |
+
correction (GEC) systems. It computes precision, recall, and F-score by comparing
|
| 32 |
+
the edit operations needed to transform source sentences into predictions versus
|
| 33 |
+
the edit operations needed to transform source sentences into references.
|
| 34 |
+
|
| 35 |
+
This metric requires three inputs:
|
| 36 |
+
- sources: The original (uncorrected) sentences
|
| 37 |
+
- predictions: The model's corrected sentences
|
| 38 |
+
- references: The gold standard corrected sentences
|
| 39 |
+
|
| 40 |
+
The metric extracts edits using the ERRANT library and computes:
|
| 41 |
+
- Precision: What fraction of predicted edits are correct
|
| 42 |
+
- Recall: What fraction of gold edits were predicted
|
| 43 |
+
- F0.5: F-score with beta=0.5 (weighing precision twice as much as recall)
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
_KWARGS_DESCRIPTION = """
|
| 47 |
+
Args:
|
| 48 |
+
sources: list of source (original/uncorrected) sentences
|
| 49 |
+
predictions: list of predicted (corrected) sentences
|
| 50 |
+
references: list of reference (gold corrected) sentences
|
| 51 |
+
lang: language code for spaCy model (default: "en")
|
| 52 |
+
- "en": English (requires en_core_web_sm)
|
| 53 |
+
- "nb": Norwegian Bokmål (requires nb_core_news_sm)
|
| 54 |
+
- "de": German (requires de_core_news_sm)
|
| 55 |
+
- etc. (any language with a spaCy model)
|
| 56 |
+
beta: beta value for F-score calculation (default: 0.5)
|
| 57 |
+
|
| 58 |
+
Returns:
|
| 59 |
+
precision: fraction of predicted edits that are correct
|
| 60 |
+
recall: fraction of gold edits that were predicted
|
| 61 |
+
f0.5: F-score with the specified beta value
|
| 62 |
+
|
| 63 |
+
Examples:
|
| 64 |
+
>>> import evaluate
|
| 65 |
+
>>> errant_gec = evaluate.load("marksverdhei/errant_gec")
|
| 66 |
+
>>> results = errant_gec.compute(
|
| 67 |
+
... sources=["This are a sentence ."],
|
| 68 |
+
... predictions=["This is a sentence ."],
|
| 69 |
+
... references=["This is a sentence ."],
|
| 70 |
+
... lang="en"
|
| 71 |
+
... )
|
| 72 |
+
>>> print(results)
|
| 73 |
+
{'precision': 1.0, 'recall': 1.0, 'f0.5': 1.0}
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
# Map language codes to spaCy model names
|
| 77 |
+
SPACY_MODELS = {
|
| 78 |
+
"en": "en_core_web_sm",
|
| 79 |
+
"nb": "nb_core_news_sm",
|
| 80 |
+
"nn": "nb_core_news_sm", # Use Bokmål model for Nynorsk as fallback
|
| 81 |
+
"de": "de_core_news_sm",
|
| 82 |
+
"es": "es_core_news_sm",
|
| 83 |
+
"fr": "fr_core_news_sm",
|
| 84 |
+
"it": "it_core_news_sm",
|
| 85 |
+
"nl": "nl_core_news_sm",
|
| 86 |
+
"pt": "pt_core_news_sm",
|
| 87 |
+
"ru": "ru_core_news_sm",
|
| 88 |
+
"zh": "zh_core_web_sm",
|
| 89 |
+
"ja": "ja_core_news_sm",
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 94 |
+
class Errant(evaluate.Metric):
|
| 95 |
+
"""ERRANT metric for grammatical error correction evaluation."""
|
| 96 |
+
|
| 97 |
+
def __init__(self, *args, **kwargs):
|
| 98 |
+
super().__init__(*args, **kwargs)
|
| 99 |
+
self._annotators = {} # Cache annotators per language
|
| 100 |
+
|
| 101 |
+
def _info(self):
|
| 102 |
+
return evaluate.MetricInfo(
|
| 103 |
+
module_type="metric",
|
| 104 |
+
description=_DESCRIPTION,
|
| 105 |
+
citation=_CITATION,
|
| 106 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 107 |
+
features=datasets.Features(
|
| 108 |
+
{
|
| 109 |
+
"sources": datasets.Value("string"),
|
| 110 |
+
"predictions": datasets.Value("string"),
|
| 111 |
+
"references": datasets.Value("string"),
|
| 112 |
+
}
|
| 113 |
+
),
|
| 114 |
+
reference_urls=["https://github.com/chrisjbryant/errant"],
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
def _get_annotator(self, lang: str):
|
| 118 |
+
"""Get or create an ERRANT annotator for the specified language."""
|
| 119 |
+
if lang in self._annotators:
|
| 120 |
+
return self._annotators[lang]
|
| 121 |
+
|
| 122 |
+
import errant
|
| 123 |
+
import spacy
|
| 124 |
+
|
| 125 |
+
model_name = SPACY_MODELS.get(lang, f"{lang}_core_news_sm")
|
| 126 |
+
|
| 127 |
+
try:
|
| 128 |
+
nlp = spacy.load(model_name)
|
| 129 |
+
except OSError:
|
| 130 |
+
raise OSError(
|
| 131 |
+
f"spaCy model '{model_name}' not found. "
|
| 132 |
+
f"Please install it with: python -m spacy download {model_name}"
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# ERRANT uses 'en' as base but we provide the spaCy model
|
| 136 |
+
# The language code is mainly used for tokenization rules
|
| 137 |
+
annotator = errant.load(lang if lang == "en" else "en", nlp)
|
| 138 |
+
self._annotators[lang] = annotator
|
| 139 |
+
return annotator
|
| 140 |
+
|
| 141 |
+
def _get_edits(self, annotator, orig_doc, cor_doc):
|
| 142 |
+
"""Extract edits between original and corrected documents.
|
| 143 |
+
|
| 144 |
+
Returns a set of (o_start, o_end, o_str, c_str) tuples.
|
| 145 |
+
"""
|
| 146 |
+
edits = annotator.annotate(orig_doc, cor_doc)
|
| 147 |
+
edit_set = set()
|
| 148 |
+
for edit in edits:
|
| 149 |
+
# Skip noop edits (no actual change)
|
| 150 |
+
if edit.o_str == edit.c_str:
|
| 151 |
+
continue
|
| 152 |
+
# Use span positions and strings as edit identifier
|
| 153 |
+
edit_set.add((edit.o_start, edit.o_end, edit.o_str, edit.c_str))
|
| 154 |
+
return edit_set
|
| 155 |
+
|
| 156 |
+
def _compute_fscore(self, tp: int, fp: int, fn: int, beta: float = 0.5) -> dict:
|
| 157 |
+
"""Compute precision, recall, and F-score."""
|
| 158 |
+
precision = float(tp) / (tp + fp) if (tp + fp) > 0 else 1.0
|
| 159 |
+
recall = float(tp) / (tp + fn) if (tp + fn) > 0 else 1.0
|
| 160 |
+
|
| 161 |
+
if precision + recall > 0:
|
| 162 |
+
f_score = float((1 + beta**2) * precision * recall) / (
|
| 163 |
+
(beta**2 * precision) + recall
|
| 164 |
+
)
|
| 165 |
+
else:
|
| 166 |
+
f_score = 0.0
|
| 167 |
+
|
| 168 |
+
return {
|
| 169 |
+
"precision": precision,
|
| 170 |
+
"recall": recall,
|
| 171 |
+
f"f{beta}": f_score,
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
def _compute(
|
| 175 |
+
self,
|
| 176 |
+
sources: list[str],
|
| 177 |
+
predictions: list[str],
|
| 178 |
+
references: list[str],
|
| 179 |
+
lang: str = "en",
|
| 180 |
+
beta: float = 0.5,
|
| 181 |
+
) -> dict:
|
| 182 |
+
"""Compute ERRANT scores for the given inputs.
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
sources: Original (uncorrected) sentences
|
| 186 |
+
predictions: Model's corrected sentences
|
| 187 |
+
references: Gold standard corrected sentences
|
| 188 |
+
lang: Language code for spaCy model
|
| 189 |
+
beta: Beta value for F-score (default 0.5)
|
| 190 |
+
|
| 191 |
+
Returns:
|
| 192 |
+
Dictionary with precision, recall, and f{beta} scores
|
| 193 |
+
"""
|
| 194 |
+
if not (len(sources) == len(predictions) == len(references)):
|
| 195 |
+
raise ValueError(
|
| 196 |
+
f"Inputs must have the same length. Got sources={len(sources)}, "
|
| 197 |
+
f"predictions={len(predictions)}, references={len(references)}"
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
annotator = self._get_annotator(lang)
|
| 201 |
+
|
| 202 |
+
total_tp = 0
|
| 203 |
+
total_fp = 0
|
| 204 |
+
total_fn = 0
|
| 205 |
+
|
| 206 |
+
for source, prediction, reference in zip(sources, predictions, references):
|
| 207 |
+
# Parse sentences
|
| 208 |
+
orig_doc = annotator.parse(source)
|
| 209 |
+
hyp_doc = annotator.parse(prediction)
|
| 210 |
+
ref_doc = annotator.parse(reference)
|
| 211 |
+
|
| 212 |
+
# Get edit sets
|
| 213 |
+
hyp_edits = self._get_edits(annotator, orig_doc, hyp_doc)
|
| 214 |
+
ref_edits = self._get_edits(annotator, orig_doc, ref_doc)
|
| 215 |
+
|
| 216 |
+
# Compute TP, FP, FN for this sample
|
| 217 |
+
tp = len(ref_edits & hyp_edits)
|
| 218 |
+
fp = len(hyp_edits - ref_edits)
|
| 219 |
+
fn = len(ref_edits - hyp_edits)
|
| 220 |
+
|
| 221 |
+
total_tp += tp
|
| 222 |
+
total_fp += fp
|
| 223 |
+
total_fn += fn
|
| 224 |
+
|
| 225 |
+
return self._compute_fscore(total_tp, total_fp, total_fn, beta=beta)
|