--- title: Sundew Health Demo sdk: gradio sdk_version: 6.0.2 app_file: app_space_wow.py pinned: false --- # Sundew Health Monitor **Neurosymbolic, energy-aware AI for continuous ECG monitoring** Combines adaptive gating, ML inference, and symbolic reasoning to deliver trustworthy, energy-efficient medical biosignal monitoring. ## Key Features - **85% energy reduction** via Sundew gating algorithm - **Explainable alerts** through symbolic rule chains - **Real-time streaming** with WebSocket support - **Multi-patient dashboard** for clinical monitoring - **Production-ready API** with comprehensive SDK ## Quick Start ### Docker (Recommended) ```bash docker-compose up --build ``` API: http://localhost:8000 | Docs: http://localhost:8000/docs ### Local Development ```bash pip install -e . --extra-index-url https://download.pytorch.org/whl/cpu alembic upgrade head uvicorn app.main:app --reload ``` ### Live Demo ```bash python app_space_live.py ``` ## Architecture ``` ECG Stream → Sundew Gating → ML Inference → Rule Engine → Alert (50-90% reduction) (PyTorch CNN) (Symbolic) ``` **Three-stage neurosymbolic pipeline:** 1. **Gating** - Adaptive windowing with significance scoring 2. **Inference** - Energy-efficient neural network 3. **Rules** - Medical knowledge base for explainability ## API Endpoints - `POST /ecg/infer` - Run full pipeline - `WS /ws/ecg/{patient_id}` - Real-time streaming - `GET /dashboard/stats` - System metrics - `GET /dashboard/patients` - Patient summaries - `GET /dashboard/alerts` - Alert queue ## SDK Usage ```python from sundew_sdk import SundewClient client = SundewClient(base_url="http://localhost:8000") result = client.infer_ecg( patient_id="p001", signal=[...], age=72, has_prior_stroke=False ) print(f"{result['label']} | Alert: {result['alert_level']}") ``` See `sdk/example_client.py` for complete examples. ## Benchmarking Evaluate against MIT-BIH Arrhythmia Database: ```bash bash scripts/run_full_benchmark.sh ``` **Metrics tracked:** - Accuracy, Precision, Recall, F1 - FLOPs reduction - Energy savings - Latency Results saved to `benchmarks/results/` ## Documentation - [DEPLOYMENT.md](DEPLOYMENT.md) - Production deployment guide - [LAUNCH.md](LAUNCH.md) - Complete feature overview - [CLAUDE.md](CLAUDE.md) - Architecture documentation ## Technology Stack - **Backend:** FastAPI, SQLAlchemy, Alembic - **ML:** PyTorch, Adaptive Sparse Training - **Algorithms:** Sundew (gating), symbolic reasoning - **Database:** PostgreSQL (production), SQLite (dev) - **Demo:** Gradio