Spaces:
Build error
Build error
Create diarization_utils
Browse files- diarization_utils +141 -0
diarization_utils
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from torchaudio import functional as F
|
| 4 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 5 |
+
from starlette.exceptions import HTTPException
|
| 6 |
+
import sys
|
| 7 |
+
|
| 8 |
+
# Code from insanely-fast-whisper:
|
| 9 |
+
# https://github.com/Vaibhavs10/insanely-fast-whisper
|
| 10 |
+
|
| 11 |
+
import logging
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
def preprocess_inputs(inputs, sampling_rate):
|
| 15 |
+
inputs = ffmpeg_read(inputs, sampling_rate)
|
| 16 |
+
|
| 17 |
+
if sampling_rate != 16000:
|
| 18 |
+
inputs = F.resample(
|
| 19 |
+
torch.from_numpy(inputs), sampling_rate, 16000
|
| 20 |
+
).numpy()
|
| 21 |
+
|
| 22 |
+
if len(inputs.shape) != 1:
|
| 23 |
+
logger.error(f"Diarization pipeline expecs single channel audio, received {inputs.shape}")
|
| 24 |
+
raise HTTPException(
|
| 25 |
+
status_code=400,
|
| 26 |
+
detail=f"Diarization pipeline expecs single channel audio, received {inputs.shape}"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# diarization model expects float32 torch tensor of shape `(channels, seq_len)`
|
| 30 |
+
diarizer_inputs = torch.from_numpy(inputs).float()
|
| 31 |
+
diarizer_inputs = diarizer_inputs.unsqueeze(0)
|
| 32 |
+
|
| 33 |
+
return inputs, diarizer_inputs
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def diarize_audio(diarizer_inputs, diarization_pipeline, parameters):
|
| 37 |
+
diarization = diarization_pipeline(
|
| 38 |
+
{"waveform": diarizer_inputs, "sample_rate": parameters.sampling_rate},
|
| 39 |
+
num_speakers=parameters.num_speakers,
|
| 40 |
+
min_speakers=parameters.min_speakers,
|
| 41 |
+
max_speakers=parameters.max_speakers,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
segments = []
|
| 45 |
+
for segment, track, label in diarization.itertracks(yield_label=True):
|
| 46 |
+
segments.append(
|
| 47 |
+
{
|
| 48 |
+
"segment": {"start": segment.start, "end": segment.end},
|
| 49 |
+
"track": track,
|
| 50 |
+
"label": label,
|
| 51 |
+
}
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# diarizer output may contain consecutive segments from the same speaker (e.g. {(0 -> 1, speaker_1), (1 -> 1.5, speaker_1), ...})
|
| 55 |
+
# we combine these segments to give overall timestamps for each speaker's turn (e.g. {(0 -> 1.5, speaker_1), ...})
|
| 56 |
+
new_segments = []
|
| 57 |
+
prev_segment = cur_segment = segments[0]
|
| 58 |
+
|
| 59 |
+
for i in range(1, len(segments)):
|
| 60 |
+
cur_segment = segments[i]
|
| 61 |
+
|
| 62 |
+
# check if we have changed speaker ("label")
|
| 63 |
+
if cur_segment["label"] != prev_segment["label"] and i < len(segments):
|
| 64 |
+
# add the start/end times for the super-segment to the new list
|
| 65 |
+
new_segments.append(
|
| 66 |
+
{
|
| 67 |
+
"segment": {
|
| 68 |
+
"start": prev_segment["segment"]["start"],
|
| 69 |
+
"end": cur_segment["segment"]["start"],
|
| 70 |
+
},
|
| 71 |
+
"speaker": prev_segment["label"],
|
| 72 |
+
}
|
| 73 |
+
)
|
| 74 |
+
prev_segment = segments[i]
|
| 75 |
+
|
| 76 |
+
# add the last segment(s) if there was no speaker change
|
| 77 |
+
new_segments.append(
|
| 78 |
+
{
|
| 79 |
+
"segment": {
|
| 80 |
+
"start": prev_segment["segment"]["start"],
|
| 81 |
+
"end": cur_segment["segment"]["end"],
|
| 82 |
+
},
|
| 83 |
+
"speaker": prev_segment["label"],
|
| 84 |
+
}
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
return new_segments
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def post_process_segments_and_transcripts(new_segments, transcript, group_by_speaker) -> list:
|
| 91 |
+
# get the end timestamps for each chunk from the ASR output
|
| 92 |
+
end_timestamps = np.array(
|
| 93 |
+
[chunk["timestamp"][-1] if chunk["timestamp"][-1] is not None else sys.float_info.max for chunk in transcript])
|
| 94 |
+
segmented_preds = []
|
| 95 |
+
|
| 96 |
+
# align the diarizer timestamps and the ASR timestamps
|
| 97 |
+
for segment in new_segments:
|
| 98 |
+
# get the diarizer end timestamp
|
| 99 |
+
end_time = segment["segment"]["end"]
|
| 100 |
+
# find the ASR end timestamp that is closest to the diarizer's end timestamp and cut the transcript to here
|
| 101 |
+
upto_idx = np.argmin(np.abs(end_timestamps - end_time))
|
| 102 |
+
|
| 103 |
+
if group_by_speaker:
|
| 104 |
+
segmented_preds.append(
|
| 105 |
+
{
|
| 106 |
+
"speaker": segment["speaker"],
|
| 107 |
+
"text": "".join(
|
| 108 |
+
[chunk["text"] for chunk in transcript[: upto_idx + 1]]
|
| 109 |
+
),
|
| 110 |
+
"timestamp": (
|
| 111 |
+
transcript[0]["timestamp"][0],
|
| 112 |
+
transcript[upto_idx]["timestamp"][1],
|
| 113 |
+
),
|
| 114 |
+
}
|
| 115 |
+
)
|
| 116 |
+
else:
|
| 117 |
+
for i in range(upto_idx + 1):
|
| 118 |
+
segmented_preds.append({"speaker": segment["speaker"], **transcript[i]})
|
| 119 |
+
|
| 120 |
+
# crop the transcripts and timestamp lists according to the latest timestamp (for faster argmin)
|
| 121 |
+
transcript = transcript[upto_idx + 1:]
|
| 122 |
+
end_timestamps = end_timestamps[upto_idx + 1:]
|
| 123 |
+
|
| 124 |
+
if len(end_timestamps) == 0:
|
| 125 |
+
break
|
| 126 |
+
|
| 127 |
+
return segmented_preds
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def diarize(diarization_pipeline, file, parameters, asr_outputs):
|
| 131 |
+
_, diarizer_inputs = preprocess_inputs(file, parameters.sampling_rate)
|
| 132 |
+
|
| 133 |
+
segments = diarize_audio(
|
| 134 |
+
diarizer_inputs,
|
| 135 |
+
diarization_pipeline,
|
| 136 |
+
parameters
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
return post_process_segments_and_transcripts(
|
| 140 |
+
segments, asr_outputs["chunks"], group_by_speaker=False
|
| 141 |
+
)
|