Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from cal import load_model, predict_image, calculate_calories
|
| 6 |
+
|
| 7 |
+
# Load the model
|
| 8 |
+
model = load_model()
|
| 9 |
+
|
| 10 |
+
# Set up the sidebar
|
| 11 |
+
st.sidebar.title("Green Food Calorie Detector")
|
| 12 |
+
st.sidebar.write("Upload an image or use your camera to take a picture.")
|
| 13 |
+
|
| 14 |
+
option = st.sidebar.selectbox(
|
| 15 |
+
'How would you like to provide the image?',
|
| 16 |
+
('Upload an image', 'Use camera')
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
image_path = None
|
| 20 |
+
if option == 'Upload an image':
|
| 21 |
+
uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "webp"])
|
| 22 |
+
if uploaded_file is not None:
|
| 23 |
+
image = Image.open(uploaded_file)
|
| 24 |
+
if image.mode == 'RGBA':
|
| 25 |
+
image = image.convert('RGB')
|
| 26 |
+
image_path = "uploaded_image.jpg"
|
| 27 |
+
image.save(image_path)
|
| 28 |
+
elif option == 'Use camera':
|
| 29 |
+
camera_image = st.sidebar.camera_input("Take a picture")
|
| 30 |
+
if camera_image is not None:
|
| 31 |
+
image = Image.open(camera_image)
|
| 32 |
+
if image.mode == 'RGBA':
|
| 33 |
+
image = image.convert('RGB')
|
| 34 |
+
image_path = "camera_image.jpg"
|
| 35 |
+
image.save(image_path)
|
| 36 |
+
|
| 37 |
+
if image_path:
|
| 38 |
+
# Display the image and classification results in columns
|
| 39 |
+
col1, col2 = st.columns(2)
|
| 40 |
+
|
| 41 |
+
with col1:
|
| 42 |
+
st.image(image, caption='Captured Image.', use_column_width=True)
|
| 43 |
+
st.write("")
|
| 44 |
+
st.write("Classifying...")
|
| 45 |
+
|
| 46 |
+
# Predict the image
|
| 47 |
+
image_with_boxes, detection_details = predict_image(image_path, model)
|
| 48 |
+
|
| 49 |
+
with col2:
|
| 50 |
+
# Display the image with bounding boxes and labels
|
| 51 |
+
st.image(image_with_boxes, caption='Processed Image.', use_column_width=True)
|
| 52 |
+
|
| 53 |
+
# Calculate and display detected items and their calories
|
| 54 |
+
detected_items = calculate_calories(detection_details)
|
| 55 |
+
st.markdown("<h3>Detection Results:</h3>", unsafe_allow_html=True)
|
| 56 |
+
for item, calories, confidence in detected_items:
|
| 57 |
+
st.markdown(f"<p style='font-size:18px;'>✓ Detected {item} ({calories} cal/100g) - Confidence: {confidence:.2%}</p>", unsafe_allow_html=True)
|
| 58 |
+
|
| 59 |
+
# Footer
|
| 60 |
+
st.markdown("""
|
| 61 |
+
<style>
|
| 62 |
+
.footer {
|
| 63 |
+
position: fixed;
|
| 64 |
+
left: 0;
|
| 65 |
+
bottom: 0;
|
| 66 |
+
width: 100%;
|
| 67 |
+
background-color: #f1f1f1;
|
| 68 |
+
color: black;
|
| 69 |
+
text-align: center;
|
| 70 |
+
padding: 10px;
|
| 71 |
+
}
|
| 72 |
+
</style>
|
| 73 |
+
<div class="footer">
|
| 74 |
+
<p>Green Food Calorie Detector © 2023</p>
|
| 75 |
+
</div>
|
| 76 |
+
""", unsafe_allow_html=True)
|