Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,27 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 3 |
from langchain_community.vectorstores import Chroma
|
| 4 |
-
from langchain_community.llms import HuggingFaceHub
|
| 5 |
from langchain.prompts import PromptTemplate
|
| 6 |
-
from langchain.chains import
|
| 7 |
from langchain.memory import ConversationBufferMemory
|
| 8 |
import warnings
|
| 9 |
-
from transformers import pipeline
|
| 10 |
-
import torch
|
| 11 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 12 |
import os
|
| 13 |
from dotenv import load_dotenv
|
|
|
|
| 14 |
|
| 15 |
warnings.filterwarnings("ignore")
|
| 16 |
load_dotenv()
|
| 17 |
|
| 18 |
# Constants and configurations
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
# Model configurations
|
| 24 |
MODEL_NAME = "SeaLLMs/SeaLLMs-v3-7B-Chat"
|
| 25 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 26 |
TOP_K_DOCS = 5
|
|
@@ -36,23 +37,20 @@ def initialize_models():
|
|
| 36 |
return vector_store
|
| 37 |
|
| 38 |
def create_llm():
|
| 39 |
-
"""Initialize the language model with
|
| 40 |
-
bnb_config = BitsAndBytesConfig(
|
| 41 |
-
load_in_4bit=True,
|
| 42 |
-
bnb_4bit_use_double_quant=True,
|
| 43 |
-
bnb_4bit_quant_type="nf4",
|
| 44 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
model = AutoModelForCausalLM.from_pretrained(
|
| 48 |
MODEL_NAME,
|
| 49 |
device_map="auto",
|
| 50 |
-
|
| 51 |
-
quantization_config=bnb_config
|
| 52 |
)
|
| 53 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 54 |
|
| 55 |
-
terminators = [tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
text_generation_pipeline = pipeline(
|
| 58 |
model=model,
|
|
@@ -64,7 +62,6 @@ def create_llm():
|
|
| 64 |
return_full_text=False,
|
| 65 |
max_new_tokens=200,
|
| 66 |
eos_token_id=terminators,
|
| 67 |
-
device_map="auto"
|
| 68 |
)
|
| 69 |
|
| 70 |
return HuggingFacePipeline(pipeline=text_generation_pipeline)
|
|
@@ -74,7 +71,7 @@ Anda adalah asisten kesehatan profesional dengan nama Feminacare.
|
|
| 74 |
Berikan informasi yang akurat, jelas, dan bermanfaat berdasarkan konteks yang tersedia.
|
| 75 |
Context yang tersedia:
|
| 76 |
{context}
|
| 77 |
-
Chat
|
| 78 |
{chat_history}
|
| 79 |
Question: {question}
|
| 80 |
Instruksi untuk menjawab:
|
|
@@ -89,91 +86,98 @@ Answer:
|
|
| 89 |
|
| 90 |
class HealthAssistant:
|
| 91 |
def __init__(self):
|
| 92 |
-
|
| 93 |
self.memory = ConversationBufferMemory(
|
| 94 |
memory_key="chat_history",
|
| 95 |
return_messages=True,
|
| 96 |
output_key='answer'
|
| 97 |
)
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
def setup_qa_chain(self):
|
| 101 |
-
"""Set up the QA chain with improved configuration"""
|
| 102 |
custom_prompt = PromptTemplate(
|
| 103 |
template=PROMPT_TEMPLATE,
|
| 104 |
input_variables=["context", "question", "chat_history"]
|
| 105 |
)
|
| 106 |
|
| 107 |
-
|
| 108 |
llm=create_llm(),
|
| 109 |
-
retriever=
|
| 110 |
memory=self.memory,
|
|
|
|
| 111 |
return_source_documents=True,
|
| 112 |
)
|
| 113 |
|
| 114 |
def respond(self, message, history):
|
| 115 |
-
"""
|
| 116 |
-
if not message:
|
| 117 |
-
return ""
|
| 118 |
-
|
| 119 |
response = self.qa_chain({"question": message})
|
| 120 |
return response["answer"]
|
| 121 |
-
|
| 122 |
def clear_history(self):
|
| 123 |
-
"""Clear conversation
|
| 124 |
self.memory.clear()
|
| 125 |
-
return
|
| 126 |
|
| 127 |
def create_demo():
|
| 128 |
-
# Initialize the assistant
|
| 129 |
assistant = HealthAssistant()
|
| 130 |
|
| 131 |
-
#
|
| 132 |
-
with gr.Blocks(
|
| 133 |
-
gr.Markdown(
|
| 134 |
-
gr.Markdown("""
|
| 135 |
-
Asisten digital ini dirancang untuk membantu Anda berkonsultasi tentang kesehatan wanita.
|
| 136 |
-
|
| 137 |
-
_Catatan: Informasi yang diberikan bersifat umum. Selalu konsultasikan dengan tenaga kesehatan untuk saran yang lebih spesifik._
|
| 138 |
-
""")
|
| 139 |
|
| 140 |
chatbot = gr.Chatbot(
|
| 141 |
-
|
| 142 |
-
height=
|
|
|
|
| 143 |
)
|
| 144 |
|
| 145 |
with gr.Row():
|
| 146 |
msg = gr.Textbox(
|
| 147 |
-
|
| 148 |
-
|
| 149 |
scale=9
|
| 150 |
)
|
| 151 |
submit = gr.Button("Kirim", scale=1)
|
| 152 |
-
|
|
|
|
| 153 |
|
| 154 |
# Set up event handlers
|
| 155 |
submit_click = submit.click(
|
| 156 |
assistant.respond,
|
| 157 |
inputs=[msg, chatbot],
|
| 158 |
outputs=[chatbot],
|
| 159 |
-
|
| 160 |
)
|
| 161 |
-
submit_click.then(lambda: "", None, msg)
|
| 162 |
|
| 163 |
msg.submit(
|
| 164 |
assistant.respond,
|
| 165 |
inputs=[msg, chatbot],
|
| 166 |
outputs=[chatbot],
|
| 167 |
-
|
| 168 |
-
).then(lambda: "", None, msg)
|
| 169 |
|
| 170 |
clear.click(
|
| 171 |
assistant.clear_history,
|
| 172 |
outputs=[chatbot],
|
| 173 |
-
|
| 174 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
return demo
|
| 177 |
|
| 178 |
-
|
| 179 |
-
demo = create_demo()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 3 |
from langchain_community.vectorstores import Chroma
|
|
|
|
| 4 |
from langchain.prompts import PromptTemplate
|
| 5 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 6 |
from langchain.memory import ConversationBufferMemory
|
| 7 |
import warnings
|
| 8 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
| 9 |
import os
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
+
from langchain_huggingface import HuggingFacePipeline
|
| 12 |
|
| 13 |
warnings.filterwarnings("ignore")
|
| 14 |
load_dotenv()
|
| 15 |
|
| 16 |
# Constants and configurations
|
| 17 |
+
TITLE = "π Asisten Kesehatan Feminacare"
|
| 18 |
+
DESCRIPTION = """
|
| 19 |
+
# π Asisten Kesehatan Feminacare
|
| 20 |
+
Asisten digital ini dirancang untuk membantu Anda berkonsultasi tentang kesehatan wanita.
|
| 21 |
+
|
| 22 |
+
*Catatan: Informasi yang diberikan bersifat umum. Selalu konsultasikan dengan tenaga kesehatan untuk saran yang lebih spesifik.*
|
| 23 |
+
"""
|
| 24 |
|
|
|
|
| 25 |
MODEL_NAME = "SeaLLMs/SeaLLMs-v3-7B-Chat"
|
| 26 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 27 |
TOP_K_DOCS = 5
|
|
|
|
| 37 |
return vector_store
|
| 38 |
|
| 39 |
def create_llm():
|
| 40 |
+
"""Initialize the language model with auto device mapping"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
model = AutoModelForCausalLM.from_pretrained(
|
| 42 |
MODEL_NAME,
|
| 43 |
device_map="auto",
|
| 44 |
+
trust_remote_code=True
|
|
|
|
| 45 |
)
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 47 |
|
| 48 |
+
terminators = [tokenizer.eos_token_id]
|
| 49 |
+
if hasattr(tokenizer, 'convert_tokens_to_ids'):
|
| 50 |
+
try:
|
| 51 |
+
terminators.append(tokenizer.convert_tokens_to_ids("<|eot_id|>"))
|
| 52 |
+
except:
|
| 53 |
+
pass
|
| 54 |
|
| 55 |
text_generation_pipeline = pipeline(
|
| 56 |
model=model,
|
|
|
|
| 62 |
return_full_text=False,
|
| 63 |
max_new_tokens=200,
|
| 64 |
eos_token_id=terminators,
|
|
|
|
| 65 |
)
|
| 66 |
|
| 67 |
return HuggingFacePipeline(pipeline=text_generation_pipeline)
|
|
|
|
| 71 |
Berikan informasi yang akurat, jelas, dan bermanfaat berdasarkan konteks yang tersedia.
|
| 72 |
Context yang tersedia:
|
| 73 |
{context}
|
| 74 |
+
Chat historyt:
|
| 75 |
{chat_history}
|
| 76 |
Question: {question}
|
| 77 |
Instruksi untuk menjawab:
|
|
|
|
| 86 |
|
| 87 |
class HealthAssistant:
|
| 88 |
def __init__(self):
|
| 89 |
+
vector_store = initialize_models()
|
| 90 |
self.memory = ConversationBufferMemory(
|
| 91 |
memory_key="chat_history",
|
| 92 |
return_messages=True,
|
| 93 |
output_key='answer'
|
| 94 |
)
|
| 95 |
+
|
|
|
|
|
|
|
|
|
|
| 96 |
custom_prompt = PromptTemplate(
|
| 97 |
template=PROMPT_TEMPLATE,
|
| 98 |
input_variables=["context", "question", "chat_history"]
|
| 99 |
)
|
| 100 |
|
| 101 |
+
self.qa_chain = ConversationalRetrievalChain.from_llm(
|
| 102 |
llm=create_llm(),
|
| 103 |
+
retriever=vector_store.as_retriever(),
|
| 104 |
memory=self.memory,
|
| 105 |
+
combine_docs_chain_kwargs={"prompt": custom_prompt},
|
| 106 |
return_source_documents=True,
|
| 107 |
)
|
| 108 |
|
| 109 |
def respond(self, message, history):
|
| 110 |
+
"""Process the message and return a response"""
|
|
|
|
|
|
|
|
|
|
| 111 |
response = self.qa_chain({"question": message})
|
| 112 |
return response["answer"]
|
| 113 |
+
|
| 114 |
def clear_history(self):
|
| 115 |
+
"""Clear the conversation memory"""
|
| 116 |
self.memory.clear()
|
| 117 |
+
return None
|
| 118 |
|
| 119 |
def create_demo():
|
|
|
|
| 120 |
assistant = HealthAssistant()
|
| 121 |
|
| 122 |
+
# Define the interface
|
| 123 |
+
with gr.Blocks(title=TITLE) as demo:
|
| 124 |
+
gr.Markdown(DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
chatbot = gr.Chatbot(
|
| 127 |
+
label="Chat History",
|
| 128 |
+
height=600,
|
| 129 |
+
show_copy_button=True,
|
| 130 |
)
|
| 131 |
|
| 132 |
with gr.Row():
|
| 133 |
msg = gr.Textbox(
|
| 134 |
+
label="Ketik pertanyaan Anda di sini...",
|
| 135 |
+
placeholder="Contoh: Apa itu PCOS?",
|
| 136 |
scale=9
|
| 137 |
)
|
| 138 |
submit = gr.Button("Kirim", scale=1)
|
| 139 |
+
|
| 140 |
+
clear = gr.Button("ποΈ Hapus Riwayat Chat")
|
| 141 |
|
| 142 |
# Set up event handlers
|
| 143 |
submit_click = submit.click(
|
| 144 |
assistant.respond,
|
| 145 |
inputs=[msg, chatbot],
|
| 146 |
outputs=[chatbot],
|
| 147 |
+
show_progress="full"
|
| 148 |
)
|
| 149 |
+
submit_click.then(lambda: "", None, msg) # Clear input after sending
|
| 150 |
|
| 151 |
msg.submit(
|
| 152 |
assistant.respond,
|
| 153 |
inputs=[msg, chatbot],
|
| 154 |
outputs=[chatbot],
|
| 155 |
+
show_progress="full"
|
| 156 |
+
).then(lambda: "", None, msg) # Clear input after sending
|
| 157 |
|
| 158 |
clear.click(
|
| 159 |
assistant.clear_history,
|
| 160 |
outputs=[chatbot],
|
| 161 |
+
show_progress=True
|
| 162 |
)
|
| 163 |
+
|
| 164 |
+
# Add some CSS styling
|
| 165 |
+
gr.Markdown("""
|
| 166 |
+
<style>
|
| 167 |
+
.gradio-container {
|
| 168 |
+
max-width: 1200px !important;
|
| 169 |
+
margin: auto;
|
| 170 |
+
}
|
| 171 |
+
</style>
|
| 172 |
+
""")
|
| 173 |
|
| 174 |
return demo
|
| 175 |
|
| 176 |
+
if __name__ == "__main__":
|
| 177 |
+
demo = create_demo()
|
| 178 |
+
demo.launch(
|
| 179 |
+
share=True,
|
| 180 |
+
server_name="0.0.0.0",
|
| 181 |
+
server_port=7860,
|
| 182 |
+
enable_queue=True
|
| 183 |
+
)
|