Spaces:
Running
Running
| import gradio as gr | |
| import pandas as pd | |
| import requests | |
| from prophet import Prophet | |
| import logging | |
| import plotly.graph_objs as go | |
| import math | |
| import numpy as np | |
| logging.basicConfig(level=logging.INFO) | |
| OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT" | |
| OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles" | |
| TIMEFRAME_MAPPING = { | |
| "1m": "1m", | |
| "5m": "5m", | |
| "15m": "15m", | |
| "30m": "30m", | |
| "1h": "1H", | |
| "2h": "2H", | |
| "4h": "4H", | |
| "6h": "6H", | |
| "12h": "12H", | |
| "1d": "1D", | |
| "1w": "1W", | |
| } | |
| def calculate_technical_indicators(df): | |
| # Calculate RSI | |
| delta = df['close'].diff() | |
| gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() | |
| loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() | |
| rs = gain / loss | |
| df['RSI'] = 100 - (100 / (1 + rs)) | |
| # Calculate MACD | |
| exp1 = df['close'].ewm(span=12, adjust=False).mean() | |
| exp2 = df['close'].ewm(span=26, adjust=False).mean() | |
| df['MACD'] = exp1 - exp2 | |
| df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean() | |
| # Calculate Bollinger Bands | |
| df['MA20'] = df['close'].rolling(window=20).mean() | |
| df['BB_upper'] = df['MA20'] + 2 * df['close'].rolling(window=20).std() | |
| df['BB_lower'] = df['MA20'] - 2 * df['close'].rolling(window=20).std() | |
| return df | |
| def create_technical_charts(df): | |
| # Price and Bollinger Bands | |
| fig1 = go.Figure() | |
| fig1.add_trace(go.Candlestick( | |
| x=df['timestamp'], | |
| open=df['open'], | |
| high=df['high'], | |
| low=df['low'], | |
| close=df['close'], | |
| name='Price' | |
| )) | |
| fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_upper'], name='Upper BB', line=dict(color='gray', dash='dash'))) | |
| fig1.add_trace(go.Scatter(x=df['timestamp'], y=df['BB_lower'], name='Lower BB', line=dict(color='gray', dash='dash'))) | |
| fig1.update_layout(title='Price and Bollinger Bands', xaxis_title='Date', yaxis_title='Price') | |
| # RSI | |
| fig2 = go.Figure() | |
| fig2.add_trace(go.Scatter(x=df['timestamp'], y=df['RSI'], name='RSI')) | |
| fig2.add_hline(y=70, line_dash="dash", line_color="red") | |
| fig2.add_hline(y=30, line_dash="dash", line_color="green") | |
| fig2.update_layout(title='RSI Indicator', xaxis_title='Date', yaxis_title='RSI') | |
| # MACD | |
| fig3 = go.Figure() | |
| fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['MACD'], name='MACD')) | |
| fig3.add_trace(go.Scatter(x=df['timestamp'], y=df['Signal_Line'], name='Signal Line')) | |
| fig3.update_layout(title='MACD', xaxis_title='Date', yaxis_title='Value') | |
| return fig1, fig2, fig3 | |
| def fetch_okx_symbols(): | |
| """ | |
| Fetch spot symbols from OKX. | |
| """ | |
| logging.info("Fetching symbols from OKX Spot tickers...") | |
| try: | |
| resp = requests.get(OKX_TICKERS_ENDPOINT, timeout=30) | |
| resp.raise_for_status() | |
| json_data = resp.json() | |
| if json_data.get("code") != "0": | |
| logging.error(f"Non-zero code returned: {json_data}") | |
| return ["BTC-USDT"] # Default fallback | |
| data = json_data.get("data", []) | |
| symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"] | |
| if not symbols: | |
| return ["BTC-USDT"] | |
| # Ensure BTC-USDT is first in the list | |
| if "BTC-USDT" in symbols: | |
| symbols.remove("BTC-USDT") | |
| symbols.insert(0, "BTC-USDT") | |
| logging.info(f"Fetched {len(symbols)} OKX spot symbols.") | |
| return symbols | |
| except Exception as e: | |
| logging.error(f"Error fetching OKX symbols: {e}") | |
| return ["BTC-USDT"] | |
| def fetch_okx_candles_chunk(symbol, timeframe, limit=300, after=None, before=None): | |
| params = { | |
| "instId": symbol, | |
| "bar": timeframe, | |
| "limit": limit | |
| } | |
| if after is not None: | |
| params["after"] = str(after) | |
| if before is not None: | |
| params["before"] = str(before) | |
| logging.info(f"Fetching chunk: symbol={symbol}, bar={timeframe}, limit={limit}") | |
| try: | |
| resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30) | |
| resp.raise_for_status() | |
| json_data = resp.json() | |
| if json_data.get("code") != "0": | |
| msg = f"OKX returned code={json_data.get('code')}, msg={json_data.get('msg')}" | |
| logging.error(msg) | |
| return pd.DataFrame(), msg | |
| items = json_data.get("data", []) | |
| if not items: | |
| return pd.DataFrame(), "" | |
| columns = ["ts", "o", "h", "l", "c", "vol", "volCcy", "volCcyQuote", "confirm"] | |
| df = pd.DataFrame(items, columns=columns) | |
| df.rename(columns={ | |
| "ts": "timestamp", | |
| "o": "open", | |
| "h": "high", | |
| "l": "low", | |
| "c": "close" | |
| }, inplace=True) | |
| df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms") | |
| numeric_cols = ["open", "high", "low", "close", "vol", "volCcy", "volCcyQuote", "confirm"] | |
| df[numeric_cols] = df[numeric_cols].astype(float) | |
| return df, "" | |
| except Exception as e: | |
| err_msg = f"Error fetching candles chunk for {symbol}: {e}" | |
| logging.error(err_msg) | |
| return pd.DataFrame(), err_msg | |
| def fetch_okx_candles(symbol, timeframe="1H", total=2000): | |
| """ | |
| Fetch historical candle data | |
| """ | |
| logging.info(f"Fetching ~{total} candles for {symbol} @ {timeframe}") | |
| calls_needed = math.ceil(total / 300.0) | |
| all_data = [] | |
| after_ts = None | |
| for _ in range(calls_needed): | |
| df_chunk, err = fetch_okx_candles_chunk( | |
| symbol, timeframe, limit=300, after=after_ts | |
| ) | |
| if err: | |
| return pd.DataFrame(), err | |
| if df_chunk.empty: | |
| break | |
| earliest_ts = df_chunk["timestamp"].iloc[-1] | |
| after_ts = int(earliest_ts.timestamp() * 1000 - 1) | |
| all_data.append(df_chunk) | |
| if len(df_chunk) < 300: | |
| break | |
| if not all_data: | |
| return pd.DataFrame(), "No data returned." | |
| df_all = pd.concat(all_data, ignore_index=True) | |
| df_all.sort_values(by="timestamp", inplace=True) | |
| df_all.reset_index(drop=True, inplace=True) | |
| # Calculate technical indicators | |
| df_all = calculate_technical_indicators(df_all) | |
| logging.info(f"Fetched {len(df_all)} rows for {symbol}.") | |
| return df_all, "" | |
| def prepare_data_for_prophet(df): | |
| if df.empty: | |
| return pd.DataFrame(columns=["ds", "y"]) | |
| df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"}) | |
| return df_prophet[["ds", "y"]] | |
| def prophet_forecast( | |
| df_prophet, | |
| periods=10, | |
| freq="h", | |
| daily_seasonality=False, | |
| weekly_seasonality=False, | |
| yearly_seasonality=False, | |
| seasonality_mode="additive", | |
| changepoint_prior_scale=0.05, | |
| ): | |
| if df_prophet.empty: | |
| return pd.DataFrame(), "No data for Prophet." | |
| try: | |
| model = Prophet( | |
| daily_seasonality=daily_seasonality, | |
| weekly_seasonality=weekly_seasonality, | |
| yearly_seasonality=yearly_seasonality, | |
| seasonality_mode=seasonality_mode, | |
| changepoint_prior_scale=changepoint_prior_scale, | |
| ) | |
| model.fit(df_prophet) | |
| future = model.make_future_dataframe(periods=periods, freq=freq) | |
| forecast = model.predict(future) | |
| return forecast, "" | |
| except Exception as e: | |
| logging.error(f"Forecast error: {e}") | |
| return pd.DataFrame(), f"Forecast error: {e}" | |
| def prophet_wrapper( | |
| df_prophet, | |
| forecast_steps, | |
| freq, | |
| daily_seasonality, | |
| weekly_seasonality, | |
| yearly_seasonality, | |
| seasonality_mode, | |
| changepoint_prior_scale, | |
| ): | |
| if len(df_prophet) < 10: | |
| return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)." | |
| full_forecast, err = prophet_forecast( | |
| df_prophet, | |
| periods=forecast_steps, | |
| freq=freq, | |
| daily_seasonality=daily_seasonality, | |
| weekly_seasonality=weekly_seasonality, | |
| yearly_seasonality=yearly_seasonality, | |
| seasonality_mode=seasonality_mode, | |
| changepoint_prior_scale=changepoint_prior_scale, | |
| ) | |
| if err: | |
| return pd.DataFrame(), err | |
| future_only = full_forecast.loc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]] | |
| return future_only, "" | |
| def create_forecast_plot(forecast_df): | |
| if forecast_df.empty: | |
| return go.Figure() | |
| fig = go.Figure() | |
| fig.add_trace(go.Scatter( | |
| x=forecast_df["ds"], | |
| y=forecast_df["yhat"], | |
| mode="lines", | |
| name="Forecast", | |
| line=dict(color="blue", width=2) | |
| )) | |
| fig.add_trace(go.Scatter( | |
| x=forecast_df["ds"], | |
| y=forecast_df["yhat_lower"], | |
| fill=None, | |
| mode="lines", | |
| line=dict(width=0), | |
| showlegend=True, | |
| name="Lower Bound" | |
| )) | |
| fig.add_trace(go.Scatter( | |
| x=forecast_df["ds"], | |
| y=forecast_df["yhat_upper"], | |
| fill="tonexty", | |
| mode="lines", | |
| line=dict(width=0), | |
| name="Upper Bound" | |
| )) | |
| fig.update_layout( | |
| title="Price Forecast", | |
| xaxis_title="Time", | |
| yaxis_title="Price", | |
| hovermode="x unified", | |
| template="plotly_white", | |
| legend=dict( | |
| yanchor="top", | |
| y=0.99, | |
| xanchor="left", | |
| x=0.01 | |
| ) | |
| ) | |
| return fig | |
| def predict( | |
| symbol, | |
| timeframe, | |
| forecast_steps, | |
| total_candles, | |
| daily_seasonality, | |
| weekly_seasonality, | |
| yearly_seasonality, | |
| seasonality_mode, | |
| changepoint_prior_scale, | |
| ): | |
| okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H") | |
| df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, total=total_candles) | |
| if err: | |
| return pd.DataFrame(), pd.DataFrame(), err | |
| df_prophet = prepare_data_for_prophet(df_raw) | |
| freq = "h" if "h" in timeframe.lower() else "d" | |
| future_df, err2 = prophet_wrapper( | |
| df_prophet, | |
| forecast_steps, | |
| freq, | |
| daily_seasonality, | |
| weekly_seasonality, | |
| yearly_seasonality, | |
| seasonality_mode, | |
| changepoint_prior_scale, | |
| ) | |
| if err2: | |
| return pd.DataFrame(), pd.DataFrame(), err2 | |
| return df_raw, future_df, "" | |
| def display_forecast( | |
| symbol, | |
| timeframe, | |
| forecast_steps, | |
| total_candles, | |
| daily_seasonality, | |
| weekly_seasonality, | |
| yearly_seasonality, | |
| seasonality_mode, | |
| changepoint_prior_scale, | |
| ): | |
| logging.info(f"Processing forecast request for {symbol}") | |
| df_raw, forecast_df, error = predict( | |
| symbol, | |
| timeframe, | |
| forecast_steps, | |
| total_candles, | |
| daily_seasonality, | |
| weekly_seasonality, | |
| yearly_seasonality, | |
| seasonality_mode, | |
| changepoint_prior_scale, | |
| ) | |
| if error: | |
| return None, None, None, None, f"Error: {error}" | |
| forecast_plot = create_forecast_plot(forecast_df) | |
| tech_plot, rsi_plot, macd_plot = create_technical_charts(df_raw) | |
| return forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df | |
| def main(): | |
| symbols = fetch_okx_symbols() | |
| with gr.Blocks(theme=gr.themes.Base()) as demo: | |
| with gr.Row(): | |
| gr.Markdown("# CryptoVision") | |
| gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fopenfree-CryptoVision.hf.space"> | |
| <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fopenfree-CryptoVision.hf.space&countColor=%23263759" /> | |
| </a>""") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| with gr.Group(): | |
| gr.Markdown("### Market Selection") | |
| symbol_dd = gr.Dropdown( | |
| label="Trading Pair", | |
| choices=symbols, | |
| value="BTC-USDT" | |
| ) | |
| timeframe_dd = gr.Dropdown( | |
| label="Timeframe", | |
| choices=list(TIMEFRAME_MAPPING.keys()), | |
| value="1h" | |
| ) | |
| with gr.Column(scale=1): | |
| with gr.Group(): | |
| gr.Markdown("### Forecast Parameters") | |
| forecast_steps_slider = gr.Slider( | |
| label="Forecast Steps", | |
| minimum=1, | |
| maximum=100, | |
| value=24, | |
| step=1 | |
| ) | |
| total_candles_slider = gr.Slider( | |
| label="Historical Candles", | |
| minimum=300, | |
| maximum=3000, | |
| value=2000, | |
| step=100 | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Group(): | |
| gr.Markdown("### Advanced Settings") | |
| with gr.Row(): | |
| daily_box = gr.Checkbox(label="Daily Seasonality", value=True) | |
| weekly_box = gr.Checkbox(label="Weekly Seasonality", value=True) | |
| yearly_box = gr.Checkbox(label="Yearly Seasonality", value=False) | |
| seasonality_mode_dd = gr.Dropdown( | |
| label="Seasonality Mode", | |
| choices=["additive", "multiplicative"], | |
| value="additive" | |
| ) | |
| changepoint_scale_slider = gr.Slider( | |
| label="Changepoint Prior Scale", | |
| minimum=0.01, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.05 | |
| ) | |
| with gr.Row(): | |
| forecast_btn = gr.Button("Generate Forecast", variant="primary", size="lg") | |
| with gr.Row(): | |
| forecast_plot = gr.Plot(label="Price Forecast") | |
| with gr.Row(): | |
| tech_plot = gr.Plot(label="Technical Analysis") | |
| rsi_plot = gr.Plot(label="RSI Indicator") | |
| with gr.Row(): | |
| macd_plot = gr.Plot(label="MACD") | |
| with gr.Row(): | |
| forecast_df = gr.Dataframe( | |
| label="Forecast Data", | |
| headers=["Date", "Forecast", "Lower Bound", "Upper Bound"] | |
| ) | |
| forecast_btn.click( | |
| fn=display_forecast, | |
| inputs=[ | |
| symbol_dd, | |
| timeframe_dd, | |
| forecast_steps_slider, | |
| total_candles_slider, | |
| daily_box, | |
| weekly_box, | |
| yearly_box, | |
| seasonality_mode_dd, | |
| changepoint_scale_slider, | |
| ], | |
| outputs=[forecast_plot, tech_plot, rsi_plot, macd_plot, forecast_df] | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| app = main() | |
| app.launch() |