Spaces:
Running
on
Zero
Running
on
Zero
Update utils_mask.py
Browse files- utils_mask.py +15 -21
utils_mask.py
CHANGED
|
@@ -77,29 +77,25 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
| 77 |
arms_left = (parse_array == 14).astype(np.float32)
|
| 78 |
arms_right = (parse_array == 15).astype(np.float32)
|
| 79 |
|
| 80 |
-
|
| 81 |
if category == 'dresses':
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
| 87 |
-
parse_mask_legs = np.logical_or.reduce((parse_array == label_map["skirt"],
|
| 88 |
-
parse_array == label_map["pants"],
|
| 89 |
-
parse_array == label_map["left_leg"],
|
| 90 |
-
parse_array == label_map["right_leg"])).astype(np.float32)
|
| 91 |
|
| 92 |
# Dilate the leg mask to ensure coverage and fill gaps
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
parse_mask_legs_dilated = cv2.dilate(parse_mask_legs.astype(np.uint8), np.ones((6, 6), np.uint8), iterations=6)
|
| 94 |
-
|
| 95 |
-
# Combine the upper body mask with the dilated leg mask
|
| 96 |
-
parse_mask = np.maximum(parse_mask_upper, parse_mask_legs_dilated)
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
elif category == 'upper_body':
|
| 105 |
parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
|
|
@@ -139,7 +135,7 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
| 139 |
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
|
| 140 |
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
|
| 141 |
shoulder_right[1] + ARM_LINE_WIDTH // 2]
|
| 142 |
-
|
| 143 |
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
|
| 144 |
im_arms_right = arms_right
|
| 145 |
else:
|
|
@@ -180,5 +176,3 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
| 180 |
mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127)
|
| 181 |
|
| 182 |
return mask, mask_gray
|
| 183 |
-
|
| 184 |
-
|
|
|
|
| 77 |
arms_left = (parse_array == 14).astype(np.float32)
|
| 78 |
arms_right = (parse_array == 15).astype(np.float32)
|
| 79 |
|
|
|
|
| 80 |
if category == 'dresses':
|
| 81 |
+
parse_mask_upper = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
|
| 82 |
+
parse_mask_lower = (parse_array == 6).astype(np.float32) + \
|
| 83 |
+
(parse_array == 12).astype(np.float32) + \
|
| 84 |
+
(parse_array == 13).astype(np.float32) + \
|
| 85 |
+
(parse_array == 5).astype(np.float32)
|
| 86 |
+
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
|
| 87 |
+
(parse_array == label_map["pants"]).astype(np.float32)
|
| 88 |
+
parser_mask_fixed += parser_mask_fixed_lower_cloth
|
| 89 |
|
| 90 |
+
parse_mask = np.logical_or(parse_mask_upper, parse_mask_lower)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# Dilate the leg mask to ensure coverage and fill gaps
|
| 93 |
+
parse_mask_legs = np.logical_or.reduce((parse_array == label_map["left_leg"],
|
| 94 |
+
parse_array == label_map["right_leg"],
|
| 95 |
+
parse_array == label_map["skirt"],
|
| 96 |
+
parse_array == label_map["pants"])).astype(np.float32)
|
| 97 |
parse_mask_legs_dilated = cv2.dilate(parse_mask_legs.astype(np.uint8), np.ones((6, 6), np.uint8), iterations=6)
|
| 98 |
+
parse_mask = np.maximum(parse_mask, parse_mask_legs_dilated)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
elif category == 'upper_body':
|
| 101 |
parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
|
|
|
|
| 135 |
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
|
| 136 |
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
|
| 137 |
shoulder_right[1] + ARM_LINE_WIDTH // 2]
|
| 138 |
+
|
| 139 |
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
|
| 140 |
im_arms_right = arms_right
|
| 141 |
else:
|
|
|
|
| 176 |
mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127)
|
| 177 |
|
| 178 |
return mask, mask_gray
|
|
|
|
|
|