Fix compatibility issues with stable diffusers version
Browse files- Use stable diffusers 0.30.3 instead of git dev version
- Use transformers 4.44.2 for compatibility
- Remove PEFT dependency causing import errors
- Switch back to single LoRA selection instead of simultaneous loading
- Download all LoRAs at startup but load one at a time
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <[email protected]>
- app.py +22 -26
- requirements.txt +2 -3
app.py
CHANGED
|
@@ -40,12 +40,11 @@ def download_lora_from_url(url, filename):
|
|
| 40 |
print(f"Downloaded {filename}")
|
| 41 |
return filename
|
| 42 |
|
| 43 |
-
def
|
| 44 |
-
"""Download
|
| 45 |
global loaded_loras
|
| 46 |
|
| 47 |
-
print("Downloading
|
| 48 |
-
adapters_to_load = []
|
| 49 |
|
| 50 |
for lora_name, lora_path in LORAS.items():
|
| 51 |
if lora_name == "None" or lora_path is None:
|
|
@@ -57,28 +56,12 @@ def preload_and_load_all_loras():
|
|
| 57 |
lora_path = download_lora_from_url(lora_path, filename)
|
| 58 |
|
| 59 |
loaded_loras[lora_name] = lora_path
|
| 60 |
-
adapters_to_load.append(lora_path)
|
| 61 |
print(f"Downloaded {lora_name}")
|
| 62 |
|
| 63 |
-
|
| 64 |
-
for i, lora_path in enumerate(adapters_to_load):
|
| 65 |
-
try:
|
| 66 |
-
adapter_name = f"adapter_{i}"
|
| 67 |
-
pipe.load_lora_weights(lora_path, adapter_name=adapter_name)
|
| 68 |
-
print(f"Loaded adapter {adapter_name}")
|
| 69 |
-
except Exception as e:
|
| 70 |
-
print(f"Failed to load {lora_path}: {e}")
|
| 71 |
-
|
| 72 |
-
# Set all adapters as active
|
| 73 |
-
try:
|
| 74 |
-
adapter_names = [f"adapter_{i}" for i in range(len(adapters_to_load))]
|
| 75 |
-
pipe.set_adapters(adapter_names)
|
| 76 |
-
print(f"All {len(adapters_to_load)} LoRAs active!")
|
| 77 |
-
except Exception as e:
|
| 78 |
-
print(f"Failed to activate adapters: {e}")
|
| 79 |
|
| 80 |
-
#
|
| 81 |
-
|
| 82 |
|
| 83 |
torch.cuda.empty_cache()
|
| 84 |
|
|
@@ -88,11 +71,19 @@ MAX_IMAGE_SIZE = 2048
|
|
| 88 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 89 |
|
| 90 |
@spaces.GPU(duration=75)
|
| 91 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 92 |
if randomize_seed:
|
| 93 |
seed = random.randint(0, MAX_SEED)
|
| 94 |
generator = torch.Generator().manual_seed(seed)
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 97 |
prompt=prompt,
|
| 98 |
guidance_scale=guidance_scale,
|
|
@@ -142,7 +133,12 @@ with gr.Blocks(css=css) as demo:
|
|
| 142 |
|
| 143 |
with gr.Accordion("Advanced Settings", open=False):
|
| 144 |
|
| 145 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
seed = gr.Slider(
|
| 148 |
label="Seed",
|
|
@@ -201,7 +197,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 201 |
gr.on(
|
| 202 |
triggers=[run_button.click, prompt.submit],
|
| 203 |
fn = infer,
|
| 204 |
-
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 205 |
outputs = [result, seed]
|
| 206 |
)
|
| 207 |
|
|
|
|
| 40 |
print(f"Downloaded {filename}")
|
| 41 |
return filename
|
| 42 |
|
| 43 |
+
def preload_loras():
|
| 44 |
+
"""Download all LoRAs at startup for later use"""
|
| 45 |
global loaded_loras
|
| 46 |
|
| 47 |
+
print("Downloading all LoRAs...")
|
|
|
|
| 48 |
|
| 49 |
for lora_name, lora_path in LORAS.items():
|
| 50 |
if lora_name == "None" or lora_path is None:
|
|
|
|
| 56 |
lora_path = download_lora_from_url(lora_path, filename)
|
| 57 |
|
| 58 |
loaded_loras[lora_name] = lora_path
|
|
|
|
| 59 |
print(f"Downloaded {lora_name}")
|
| 60 |
|
| 61 |
+
print(f"All {len(loaded_loras)} LoRAs downloaded and ready!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
# Download all LoRAs at startup
|
| 64 |
+
preload_loras()
|
| 65 |
|
| 66 |
torch.cuda.empty_cache()
|
| 67 |
|
|
|
|
| 71 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 72 |
|
| 73 |
@spaces.GPU(duration=75)
|
| 74 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_selection="None", progress=gr.Progress(track_tqdm=True)):
|
| 75 |
if randomize_seed:
|
| 76 |
seed = random.randint(0, MAX_SEED)
|
| 77 |
generator = torch.Generator().manual_seed(seed)
|
| 78 |
|
| 79 |
+
# Load selected LoRA
|
| 80 |
+
if lora_selection != "None" and lora_selection in loaded_loras:
|
| 81 |
+
try:
|
| 82 |
+
pipe.load_lora_weights(loaded_loras[lora_selection])
|
| 83 |
+
pipe.fuse_lora(lora_scale=1.0)
|
| 84 |
+
except Exception as e:
|
| 85 |
+
print(f"Failed to load LoRA {lora_selection}: {e}")
|
| 86 |
+
|
| 87 |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
| 88 |
prompt=prompt,
|
| 89 |
guidance_scale=guidance_scale,
|
|
|
|
| 133 |
|
| 134 |
with gr.Accordion("Advanced Settings", open=False):
|
| 135 |
|
| 136 |
+
lora_selection = gr.Dropdown(
|
| 137 |
+
label="LoRA",
|
| 138 |
+
choices=list(LORAS.keys()),
|
| 139 |
+
value="None",
|
| 140 |
+
info="Select a LoRA to enhance image generation"
|
| 141 |
+
)
|
| 142 |
|
| 143 |
seed = gr.Slider(
|
| 144 |
label="Seed",
|
|
|
|
| 197 |
gr.on(
|
| 198 |
triggers=[run_button.click, prompt.submit],
|
| 199 |
fn = infer,
|
| 200 |
+
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_selection],
|
| 201 |
outputs = [result, seed]
|
| 202 |
)
|
| 203 |
|
requirements.txt
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
accelerate
|
| 2 |
-
|
| 3 |
torch
|
| 4 |
-
transformers
|
| 5 |
xformers
|
| 6 |
sentencepiece
|
| 7 |
-
peft
|
| 8 |
requests
|
|
|
|
| 1 |
accelerate
|
| 2 |
+
diffusers==0.30.3
|
| 3 |
torch
|
| 4 |
+
transformers==4.44.2
|
| 5 |
xformers
|
| 6 |
sentencepiece
|
|
|
|
| 7 |
requests
|