Spaces:
Running
Running
zhouxiangxin1998
commited on
Commit
Β·
cc5c681
1
Parent(s):
8c31b30
add auto datatype
Browse files
app.py
CHANGED
|
@@ -58,74 +58,85 @@ with demo:
|
|
| 58 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 59 |
with gr.TabItem("π Inverse Folding Leaderboard", elem_id='inverse-folding-table', id=0,):
|
| 60 |
with gr.Row():
|
|
|
|
| 61 |
inverse_folding_table = gr.components.DataFrame(
|
| 62 |
-
|
| 63 |
height=99999,
|
| 64 |
interactive=False,
|
| 65 |
-
datatype=['markdown'
|
|
|
|
| 66 |
)
|
| 67 |
with gr.TabItem("π Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
|
| 68 |
with gr.Row():
|
| 69 |
-
|
| 70 |
-
|
|
|
|
| 71 |
height=99999,
|
| 72 |
interactive=False,
|
| 73 |
-
datatype=['markdown'
|
| 74 |
)
|
| 75 |
with gr.TabItem("π Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
|
| 76 |
with gr.Row():
|
| 77 |
-
|
| 78 |
-
|
|
|
|
| 79 |
height=99999,
|
| 80 |
interactive=False,
|
| 81 |
-
datatype=['markdown'
|
| 82 |
)
|
| 83 |
with gr.TabItem("π Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
|
| 84 |
with gr.Row():
|
| 85 |
-
|
| 86 |
-
|
|
|
|
| 87 |
height=99999,
|
| 88 |
interactive=False,
|
| 89 |
-
datatype=['markdown'
|
| 90 |
)
|
| 91 |
with gr.TabItem("π Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
|
| 92 |
with gr.Row():
|
| 93 |
-
|
| 94 |
-
|
|
|
|
| 95 |
height=99999,
|
| 96 |
interactive=False,
|
| 97 |
-
datatype=['markdown'
|
| 98 |
)
|
| 99 |
with gr.TabItem("π Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
|
| 100 |
with gr.Row():
|
| 101 |
-
|
| 102 |
-
|
|
|
|
| 103 |
height=99999,
|
| 104 |
interactive=False,
|
|
|
|
| 105 |
)
|
| 106 |
with gr.TabItem("π
Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
|
| 107 |
with gr.Row():
|
| 108 |
-
|
| 109 |
-
|
|
|
|
| 110 |
height=99999,
|
| 111 |
interactive=False,
|
| 112 |
-
datatype=['markdown'
|
| 113 |
)
|
| 114 |
with gr.TabItem("π
Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
|
| 115 |
with gr.Row():
|
| 116 |
-
|
| 117 |
-
|
|
|
|
| 118 |
height=99999,
|
| 119 |
interactive=False,
|
| 120 |
-
datatype=['markdown'
|
| 121 |
)
|
| 122 |
with gr.TabItem("π
Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
|
| 123 |
with gr.Row():
|
| 124 |
-
|
| 125 |
-
|
|
|
|
| 126 |
height=99999,
|
| 127 |
interactive=False,
|
| 128 |
-
datatype=['markdown'
|
| 129 |
)
|
| 130 |
|
| 131 |
|
|
|
|
| 58 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 59 |
with gr.TabItem("π Inverse Folding Leaderboard", elem_id='inverse-folding-table', id=0,):
|
| 60 |
with gr.Row():
|
| 61 |
+
inverse_folding_csv = pd.read_csv('data/inverse_folding.csv')
|
| 62 |
inverse_folding_table = gr.components.DataFrame(
|
| 63 |
+
inverse_folding_csv,
|
| 64 |
height=99999,
|
| 65 |
interactive=False,
|
| 66 |
+
datatype=['markdown'] + (len(inverse_folding_csv.columns)-1) * ['number'],
|
| 67 |
+
|
| 68 |
)
|
| 69 |
with gr.TabItem("π Structure Design Leaderboard", elem_id='structure-design-table', id=1,):
|
| 70 |
with gr.Row():
|
| 71 |
+
structure_design_csv = pd.read_csv('data/structure_design.csv')
|
| 72 |
+
structure_design_table = gr.components.DataFrame(
|
| 73 |
+
structure_design_csv,
|
| 74 |
height=99999,
|
| 75 |
interactive=False,
|
| 76 |
+
datatype=['markdown'] + (len(structure_design_csv.columns)-1) * ['number'],
|
| 77 |
)
|
| 78 |
with gr.TabItem("π Sequence Design Leaderboard", elem_id='sequence-design-table', id=2,):
|
| 79 |
with gr.Row():
|
| 80 |
+
sequence_design_csv = pd.read_csv('data/sequence_design.csv'),
|
| 81 |
+
sequence_design_table = gr.components.DataFrame(
|
| 82 |
+
sequence_design_csv,
|
| 83 |
height=99999,
|
| 84 |
interactive=False,
|
| 85 |
+
datatype=['markdown'] + (len(sequence_design_csv.columns)-1) * ['number'],
|
| 86 |
)
|
| 87 |
with gr.TabItem("π Sequence-Structure Co-Design Leaderboard", elem_id='co-design-table', id=3,):
|
| 88 |
with gr.Row():
|
| 89 |
+
co_design_csv = pd.read_csv('data/co_design.csv')
|
| 90 |
+
co_design_table = gr.components.DataFrame(
|
| 91 |
+
co_design_csv,
|
| 92 |
height=99999,
|
| 93 |
interactive=False,
|
| 94 |
+
datatype=['markdown'] + (len(co_design_csv.columns)-1) * ['number'],
|
| 95 |
)
|
| 96 |
with gr.TabItem("π Motif Scaffolding Leaderboard", elem_id='motif-scaffolding-table', id=4,):
|
| 97 |
with gr.Row():
|
| 98 |
+
motif_scaffolding_csv = pd.read_csv('data/motif_scaffolding.csv')
|
| 99 |
+
motif_scaffolding_table = gr.components.DataFrame(
|
| 100 |
+
motif_scaffolding_csv,
|
| 101 |
height=99999,
|
| 102 |
interactive=False,
|
| 103 |
+
datatype=['markdown'] + (len(motif_scaffolding_csv.columns)-1) * ['number'],
|
| 104 |
)
|
| 105 |
with gr.TabItem("π Antibody Design Leaderboard", elem_id='antibody-design-table', id=5,):
|
| 106 |
with gr.Row():
|
| 107 |
+
antibody_design_csv = pd.read_csv('data/antibody_design.csv')
|
| 108 |
+
antibody_design_table = gr.components.DataFrame(
|
| 109 |
+
antibody_design_csv,
|
| 110 |
height=99999,
|
| 111 |
interactive=False,
|
| 112 |
+
datatype=['markdown'] + (len(antibody_design_csv.columns)-1) * ['number'],
|
| 113 |
)
|
| 114 |
with gr.TabItem("π
Protein Folding Leaderboard", elem_id='protein-folding-table', id=6,):
|
| 115 |
with gr.Row():
|
| 116 |
+
protein_folding_csv = pd.read_csv('data/protein_folding.csv')
|
| 117 |
+
protein_folding_table = gr.components.DataFrame(
|
| 118 |
+
protein_folding_csv,
|
| 119 |
height=99999,
|
| 120 |
interactive=False,
|
| 121 |
+
datatype=['markdown'] + (len(protein_folding_csv.columns)-1) * ['number'],
|
| 122 |
)
|
| 123 |
with gr.TabItem("π
Multi-State Prediction Leaderboard", elem_id='multi-state-prediction-table', id=7,):
|
| 124 |
with gr.Row():
|
| 125 |
+
multi_state_prediction_csv = pd.read_csv('data/multi_state_prediction.csv')
|
| 126 |
+
multi_state_prediction_table = gr.components.DataFrame(
|
| 127 |
+
multi_state_prediction_csv,
|
| 128 |
height=99999,
|
| 129 |
interactive=False,
|
| 130 |
+
datatype=['markdown'] + (len(multi_state_prediction_csv.columns)-1) * ['number'],
|
| 131 |
)
|
| 132 |
with gr.TabItem("π
Conformation Prediction Leaderboard", elem_id='conformation-prediction-table', id=8,):
|
| 133 |
with gr.Row():
|
| 134 |
+
conformation_prediction = pd.read_csv('data/conformation_prediction.csv')
|
| 135 |
+
conformation_prediction_table = gr.components.DataFrame(
|
| 136 |
+
conformation_prediction,
|
| 137 |
height=99999,
|
| 138 |
interactive=False,
|
| 139 |
+
datatype=['markdown'] + (len(conformation_prediction.columns)-1) * ['number'],
|
| 140 |
)
|
| 141 |
|
| 142 |
|