Spaces:
Runtime error
Runtime error
Commit
·
513afb6
1
Parent(s):
f4ca2fd
Create new file
Browse files
app.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import tarfile
|
| 7 |
+
import urllib.request
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"
|
| 11 |
+
HOUSING_PATH = os.path.join("datasets", "housing")
|
| 12 |
+
HOUSING_URL = DOWNLOAD_ROOT + "datasets/housing/housing.tgz"
|
| 13 |
+
|
| 14 |
+
def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
|
| 15 |
+
if not os.path.isdir(housing_path):
|
| 16 |
+
os.makedirs(housing_path)
|
| 17 |
+
tgz_path = os.path.join(housing_path, "housing.tgz")
|
| 18 |
+
urllib.request.urlretrieve(housing_url, tgz_path)
|
| 19 |
+
housing_tgz = tarfile.open(tgz_path)
|
| 20 |
+
housing_tgz.extractall(path=housing_path)
|
| 21 |
+
housing_tgz.close()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def load_housing_data(housing_path=HOUSING_PATH):
|
| 26 |
+
csv_path = os.path.join(housing_path, "housing.csv")
|
| 27 |
+
return pd.read_csv(csv_path)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
#1. Download the data
|
| 31 |
+
|
| 32 |
+
fetch_housing_data()
|
| 33 |
+
|
| 34 |
+
housing_pd = load_housing_data()
|
| 35 |
+
housing_pd.head()
|
| 36 |
+
|
| 37 |
+
## tentatively drop categorical feature
|
| 38 |
+
housing = housing_pd.drop('ocean_proximity', axis=1)
|
| 39 |
+
housing
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
#2. Prepare the Data for Machine Learning Algorithms
|
| 44 |
+
## 1. split data to get train and test set
|
| 45 |
+
from sklearn.model_selection import train_test_split
|
| 46 |
+
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10)
|
| 47 |
+
|
| 48 |
+
## 2. clean the missing values
|
| 49 |
+
train_set_clean = train_set.dropna(subset=["total_bedrooms"])
|
| 50 |
+
train_set_clean
|
| 51 |
+
|
| 52 |
+
## 2. derive training features and training labels
|
| 53 |
+
train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y
|
| 54 |
+
train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
## 4. scale the numeric features in training set
|
| 58 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 59 |
+
scaler = MinMaxScaler() ## define the transformer
|
| 60 |
+
scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset
|
| 61 |
+
|
| 62 |
+
train_features_normalized = scaler.transform(train_features)
|
| 63 |
+
train_features_normalized
|
| 64 |
+
|
| 65 |
+
#3. Training ML model on the Training Set
|
| 66 |
+
|
| 67 |
+
from sklearn.linear_model import LinearRegression ## import the LinearRegression Function
|
| 68 |
+
lin_reg = LinearRegression() ## Initialize the class
|
| 69 |
+
lin_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
### visualize the data
|
| 74 |
+
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
|
| 75 |
+
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
|
| 76 |
+
print("Saving figure", fig_id, ' to ',path)
|
| 77 |
+
if tight_layout:
|
| 78 |
+
plt.tight_layout()
|
| 79 |
+
plt.savefig(path, format=fig_extension, dpi=resolution)
|
| 80 |
+
|
| 81 |
+
PROJECT_ROOT_DIR='./'
|
| 82 |
+
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images")
|
| 83 |
+
os.makedirs(IMAGES_PATH, exist_ok=True)
|
| 84 |
+
|
| 85 |
+
images_path = os.path.join(PROJECT_ROOT_DIR, "images", "end_to_end_project")
|
| 86 |
+
os.makedirs(images_path, exist_ok=True)
|
| 87 |
+
DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"
|
| 88 |
+
filename = "california.png"
|
| 89 |
+
print("Downloading", filename)
|
| 90 |
+
url = DOWNLOAD_ROOT + "images/end_to_end_project/" + filename
|
| 91 |
+
urllib.request.urlretrieve(url, os.path.join(images_path, filename))
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
### written by Jie
|
| 95 |
+
def draw_map_customize(longitude,latitude, fig_id='test',fig_extension='png' ):
|
| 96 |
+
import matplotlib.image as mpimg
|
| 97 |
+
california_img=mpimg.imread(os.path.join(images_path, filename))
|
| 98 |
+
ax = housing.plot(kind="scatter", x="longitude", y="latitude", figsize=(10,7),
|
| 99 |
+
s=housing['population']/100, label="Population",
|
| 100 |
+
c="median_house_value", cmap=plt.get_cmap("jet"),
|
| 101 |
+
colorbar=False, alpha=0.4)
|
| 102 |
+
plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5,
|
| 103 |
+
cmap=plt.get_cmap("jet"))
|
| 104 |
+
plt.ylabel("Latitude", fontsize=18)
|
| 105 |
+
plt.xlabel("Longitude", fontsize=18)
|
| 106 |
+
|
| 107 |
+
plt.xticks(fontsize=18, rotation=0)
|
| 108 |
+
plt.yticks(fontsize=18, rotation=0)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
plt.plot(longitude,latitude, "ro", alpha=0.7, marker=r'$\clubsuit$', markersize=30)
|
| 112 |
+
|
| 113 |
+
plt.annotate("Your location is here", xy=(longitude,latitude), xytext=(longitude+1,latitude+1), fontsize=20,
|
| 114 |
+
arrowprops=dict(arrowstyle="->"))
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
prices = housing["median_house_value"]
|
| 118 |
+
tick_values = np.linspace(prices.min(), prices.max(), 11)
|
| 119 |
+
cbar = plt.colorbar(ticks=tick_values/prices.max())
|
| 120 |
+
cbar.ax.set_yticklabels(["$%dk"%(round(v/1000)) for v in tick_values], fontsize=14)
|
| 121 |
+
cbar.set_label('Median House Value', fontsize=16)
|
| 122 |
+
|
| 123 |
+
plt.legend(fontsize=16)
|
| 124 |
+
save_fig(fig_id)
|
| 125 |
+
#plt.show()
|
| 126 |
+
|
| 127 |
+
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
|
| 128 |
+
return path
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def get_sample_data(num_data):
|
| 133 |
+
sample_data = []
|
| 134 |
+
for i in range(num_data):
|
| 135 |
+
samp = housing.sample(1)
|
| 136 |
+
longitude = float(samp['longitude'].values[0])
|
| 137 |
+
latitude = float(samp['latitude'].values[0])
|
| 138 |
+
housing_median_age = float(samp['housing_median_age'].values[0])
|
| 139 |
+
total_rooms = float(samp['total_rooms'].values[0])
|
| 140 |
+
total_bedrooms = float(samp['total_bedrooms'].values[0])
|
| 141 |
+
population = float(samp['population'].values[0])
|
| 142 |
+
households = float(samp['households'].values[0])
|
| 143 |
+
median_income = float(samp['median_income'].values[0])
|
| 144 |
+
|
| 145 |
+
sample_data.append([longitude,latitude,housing_median_age,total_rooms,total_bedrooms,population,households,median_income])
|
| 146 |
+
return sample_data
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def predict_price(longitude,latitude,housing_median_age,total_rooms,total_bedrooms,population,households,median_income):
|
| 150 |
+
# initialize data of lists.
|
| 151 |
+
data = {'longitude':float(longitude),
|
| 152 |
+
'latitude':float(latitude),
|
| 153 |
+
'housing_median_age':float(housing_median_age),
|
| 154 |
+
'total_rooms':float(total_rooms),
|
| 155 |
+
'total_bedrooms':float(total_bedrooms),
|
| 156 |
+
'population':float(population),
|
| 157 |
+
'households':float(households),
|
| 158 |
+
'median_income':float(median_income),
|
| 159 |
+
}
|
| 160 |
+
test_features = pd.DataFrame(columns=['longitude', 'latitude', 'housing_median_age', 'total_rooms',
|
| 161 |
+
'total_bedrooms', 'population', 'households', 'median_income'])
|
| 162 |
+
# Create DataFrame
|
| 163 |
+
test_features = test_features.append(data,ignore_index=True)
|
| 164 |
+
test_features = test_features.dropna(subset=["total_bedrooms"])
|
| 165 |
+
|
| 166 |
+
## 3. scale the numeric features in test set.
|
| 167 |
+
## important note: do not apply fit function on the test set, using same scalar from training set
|
| 168 |
+
test_features_normalized = scaler.transform(test_features)
|
| 169 |
+
test_features_normalized
|
| 170 |
+
|
| 171 |
+
pred = lin_reg.predict(test_features_normalized)[0]
|
| 172 |
+
|
| 173 |
+
map_file = draw_map_customize(longitude,latitude, fig_id='test',fig_extension='png' )
|
| 174 |
+
|
| 175 |
+
return pred,map_file
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
### configure inputs/outputs
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
set_longitude = gr.inputs.Slider(-124.350000, -114.310000, step=0.5, default=-120, label = 'Longitude')
|
| 182 |
+
set_latitude = gr.inputs.Slider(32, 41, step=0.5, default=33, label = 'Latitude')
|
| 183 |
+
set_housing_median_age = gr.inputs.Slider(1, 52, step=1, default=10, label = 'Housing_median_age (Year)')
|
| 184 |
+
set_total_rooms = gr.inputs.Slider(1, 40000, step=5, default=10000, label = 'Total_rooms')
|
| 185 |
+
set_total_bedrooms = gr.inputs.Slider(1, 6445, step=5, default=5000, label = 'Total_bedrooms')
|
| 186 |
+
set_population = gr.inputs.Slider(3, 35682, step=5, default=10, label = 'Population')
|
| 187 |
+
set_households = gr.inputs.Slider(1, 6082, step=5, default=10, label = 'Households')
|
| 188 |
+
set_median_income = gr.inputs.Slider(0, 15, step=0.5, default=10, label = 'Median_income')
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
set_label = gr.outputs.Textbox(label="Predicted Housing Prices")
|
| 193 |
+
|
| 194 |
+
# define output as the single class text
|
| 195 |
+
set_out_images = gr.outputs.Image(label="Closest Neighbors")
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
### configure gradio, detailed can be found at https://www.gradio.app/docs/#i_slider
|
| 199 |
+
interface = gr.Interface(fn=predict_price,
|
| 200 |
+
inputs=[set_longitude, set_latitude,set_housing_median_age,set_total_rooms,set_total_bedrooms,set_population,set_households,set_median_income],
|
| 201 |
+
outputs=[set_label,set_out_images],
|
| 202 |
+
examples_per_page = 2,
|
| 203 |
+
examples = get_sample_data(10),
|
| 204 |
+
title="CSCI4750/5750 Demo 3: Web Application for Housing Price Prediction",
|
| 205 |
+
description= "Click examples below for a quick demo",
|
| 206 |
+
theme = 'huggingface',
|
| 207 |
+
layout = 'vertical'
|
| 208 |
+
)
|
| 209 |
+
interface.launch(debug=True)
|