Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,13 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
from utils.data_cleaning import preprocess_data, remove_outliers_iqr, cap_extreme_values, convert_string_to_numeric
|
| 4 |
-
from utils.visualizations import (
|
| 5 |
-
plot_correlation_heatmap,
|
| 6 |
-
plot_histogram,
|
| 7 |
-
plot_box_plot,
|
| 8 |
-
plot_pair_plot,
|
| 9 |
-
plot_scatter_plot,
|
| 10 |
-
plot_bar_plot,
|
| 11 |
-
)
|
| 12 |
-
from utils.model_training import train_all_models
|
| 13 |
-
import matplotlib.pyplot as plt
|
| 14 |
import seaborn as sns
|
|
|
|
| 15 |
import io
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# New Function: Combined Histogram and Bar Plot Comparison
|
| 18 |
def combined_histogram_barplot(df):
|
| 19 |
"""
|
|
@@ -42,6 +36,71 @@ def combined_histogram_barplot(df):
|
|
| 42 |
plt.tight_layout()
|
| 43 |
return fig
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
# Streamlit App Title
|
| 46 |
st.title("Data Analysis, Model Training, and Visualization")
|
| 47 |
|
|
@@ -82,12 +141,10 @@ if uploaded_file is not None:
|
|
| 82 |
st.subheader("Correlation Heatmap")
|
| 83 |
st.write("Visualizing correlations between numeric features...")
|
| 84 |
heatmap_fig = plot_correlation_heatmap(df_cleaned)
|
| 85 |
-
st.pyplot(heatmap_fig)
|
| 86 |
|
| 87 |
# Save and download heatmap as PNG
|
| 88 |
-
heatmap_buffer =
|
| 89 |
-
heatmap_fig.savefig(heatmap_buffer, format="png") # Save the figure to the buffer
|
| 90 |
-
heatmap_buffer.seek(0) # Reset buffer position to the beginning
|
| 91 |
|
| 92 |
st.download_button(
|
| 93 |
label="Download Correlation Heatmap (PNG)",
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import seaborn as sns
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
import io
|
| 6 |
|
| 7 |
+
# Import custom functions from your utils
|
| 8 |
+
from utils.data_cleaning import preprocess_data, remove_outliers_iqr, cap_extreme_values, convert_string_to_numeric
|
| 9 |
+
from utils.model_training import train_all_models
|
| 10 |
+
|
| 11 |
# New Function: Combined Histogram and Bar Plot Comparison
|
| 12 |
def combined_histogram_barplot(df):
|
| 13 |
"""
|
|
|
|
| 36 |
plt.tight_layout()
|
| 37 |
return fig
|
| 38 |
|
| 39 |
+
# Plotting Functions
|
| 40 |
+
def plot_correlation_heatmap(df):
|
| 41 |
+
"""
|
| 42 |
+
Plot a correlation heatmap for the numeric columns in the dataframe.
|
| 43 |
+
"""
|
| 44 |
+
corr = df.corr()
|
| 45 |
+
fig = plt.figure(figsize=(10, 8)) # Create a new figure object
|
| 46 |
+
heatmap = sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
|
| 47 |
+
plt.title("Correlation Heatmap")
|
| 48 |
+
return fig # Return the figure object
|
| 49 |
+
|
| 50 |
+
def save_figure_as_png(fig):
|
| 51 |
+
"""
|
| 52 |
+
Save the given figure as a PNG file to a BytesIO buffer.
|
| 53 |
+
"""
|
| 54 |
+
buffer = io.BytesIO()
|
| 55 |
+
fig.savefig(buffer, format="png") # Save the figure to the buffer
|
| 56 |
+
buffer.seek(0) # Reset the buffer's position to the beginning
|
| 57 |
+
return buffer
|
| 58 |
+
|
| 59 |
+
def plot_histogram(df, column):
|
| 60 |
+
"""
|
| 61 |
+
Plot a histogram for a specific column in the dataframe.
|
| 62 |
+
"""
|
| 63 |
+
plt.figure(figsize=(8, 6))
|
| 64 |
+
sns.histplot(df[column], kde=True, bins=30, color="skyblue")
|
| 65 |
+
plt.title(f"Histogram of {column}")
|
| 66 |
+
plt.xlabel(column)
|
| 67 |
+
plt.ylabel("Frequency")
|
| 68 |
+
return plt.gcf()
|
| 69 |
+
|
| 70 |
+
def plot_box_plot(df, column):
|
| 71 |
+
"""
|
| 72 |
+
Plot a box plot for a specific column in the dataframe.
|
| 73 |
+
"""
|
| 74 |
+
plt.figure(figsize=(8, 6))
|
| 75 |
+
sns.boxplot(x=df[column])
|
| 76 |
+
plt.title(f"Box Plot of {column}")
|
| 77 |
+
return plt.gcf()
|
| 78 |
+
|
| 79 |
+
def plot_pair_plot(df):
|
| 80 |
+
"""
|
| 81 |
+
Plot a pair plot for numeric columns in the dataframe.
|
| 82 |
+
"""
|
| 83 |
+
numeric_columns = df.select_dtypes(include=['float64', 'int64']).columns
|
| 84 |
+
return sns.pairplot(df[numeric_columns])
|
| 85 |
+
|
| 86 |
+
def plot_scatter_plot(df, x_col, y_col):
|
| 87 |
+
"""
|
| 88 |
+
Plot a scatter plot between two numeric columns.
|
| 89 |
+
"""
|
| 90 |
+
plt.figure(figsize=(8, 6))
|
| 91 |
+
sns.scatterplot(x=df[x_col], y=df[y_col], color="green")
|
| 92 |
+
plt.title(f"Scatter Plot between {x_col} and {y_col}")
|
| 93 |
+
return plt.gcf()
|
| 94 |
+
|
| 95 |
+
def plot_bar_plot(df, column):
|
| 96 |
+
"""
|
| 97 |
+
Plot a bar plot for a categorical column.
|
| 98 |
+
"""
|
| 99 |
+
plt.figure(figsize=(8, 6))
|
| 100 |
+
sns.countplot(x=df[column])
|
| 101 |
+
plt.title(f"Bar Plot of {column}")
|
| 102 |
+
return plt.gcf()
|
| 103 |
+
|
| 104 |
# Streamlit App Title
|
| 105 |
st.title("Data Analysis, Model Training, and Visualization")
|
| 106 |
|
|
|
|
| 141 |
st.subheader("Correlation Heatmap")
|
| 142 |
st.write("Visualizing correlations between numeric features...")
|
| 143 |
heatmap_fig = plot_correlation_heatmap(df_cleaned)
|
| 144 |
+
st.pyplot(heatmap_fig) # Display the heatmap using Streamlit
|
| 145 |
|
| 146 |
# Save and download heatmap as PNG
|
| 147 |
+
heatmap_buffer = save_figure_as_png(heatmap_fig) # Save the figure to buffer
|
|
|
|
|
|
|
| 148 |
|
| 149 |
st.download_button(
|
| 150 |
label="Download Correlation Heatmap (PNG)",
|