Spaces:
Sleeping
Sleeping
File size: 11,438 Bytes
e58ad46 4409f0b e58ad46 4409f0b e58ad46 4409f0b e58ad46 4409f0b e58ad46 4409f0b e58ad46 4409f0b e58ad46 4409f0b e58ad46 4409f0b e58ad46 4409f0b e58ad46 4409f0b e58ad46 ba8b2b2 4409f0b e58ad46 4409f0b e58ad46 4409f0b 3cd97b7 4409f0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import streamlit as st
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.svm import SVC, SVR
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, mean_squared_error, mean_absolute_error, r2_score
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from io import BytesIO
# Streamlit app title
st.title("Model Training with Outlier Removal, Metrics, and Correlation Heatmap")
# File uploader
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
if uploaded_file is not None:
# Read the uploaded CSV file
df = pd.read_csv(uploaded_file)
# Display the dataset
st.write("Dataset:")
st.dataframe(df)
# Convert categorical (str) data to numerical
st.write("Converting Categorical Columns to Numerical Values:")
label_encoder = LabelEncoder()
for col in df.columns:
if df[col].dtype == 'object' or len(df[col].unique()) <= 10:
st.write(f"Encoding Column: **{col}**")
df[col] = label_encoder.fit_transform(df[col])
# Display the dataset after conversion
st.write("Dataset After Conversion:")
st.dataframe(df)
# Handle missing values
st.write("Handling Missing (Null) Values:")
fill_method = st.selectbox("Choose how to handle missing values", ["Drop rows", "Fill with mean/median"])
if fill_method == "Drop rows":
df = df.dropna()
elif fill_method == "Fill with mean/median":
for col in df.columns:
if df[col].dtype in ['float64', 'int64']:
df[col].fillna(df[col].mean(), inplace=True)
else:
df[col].fillna(df[col].mode()[0], inplace=True)
# Remove outliers using the IQR method
st.write("Removing Outliers Using IQR:")
def remove_outliers_iqr(data, column):
Q1 = data[column].quantile(0.25)
Q3 = data[column].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
return data[(data[column] >= lower_bound) & (data[column] <= upper_bound)]
numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns
for col in numeric_cols:
original_count = len(df)
df = remove_outliers_iqr(df, col)
st.write(f"Removed outliers from **{col}**: {original_count - len(df)} rows removed.")
# Capping Extreme Values (based on 5% and 95% percentiles)
st.write("Handling Extreme Values (Capping):")
def cap_extreme_values(dataframe):
for col in dataframe.select_dtypes(include=[np.number]).columns:
lower_limit = dataframe[col].quantile(0.05)
upper_limit = dataframe[col].quantile(0.95)
dataframe[col] = np.clip(dataframe[col], lower_limit, upper_limit)
return dataframe
df = cap_extreme_values(df)
# Display dataset after cleaning
st.write("Dataset After Outlier Removal and Capping Extreme Values:")
st.dataframe(df)
# Add clean data download option
st.subheader("Download Cleaned Dataset")
st.download_button(
label="Download Cleaned Dataset (CSV)",
data=df.to_csv(index=False),
file_name="cleaned_dataset.csv",
mime="text/csv"
)
# Correlation Heatmap
st.subheader("Correlation Heatmap")
corr = df.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f", cbar=True)
st.pyplot(plt)
# Save heatmap as PNG
buf = BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
st.download_button(
label="Download Correlation Heatmap as PNG",
data=buf,
file_name="correlation_heatmap.png",
mime="image/png"
)
# Highlight highly correlated pairs
st.subheader("Highly Correlated Features")
high_corr = corr.abs().unstack().sort_values(ascending=False).drop_duplicates()
high_corr = high_corr[high_corr.index.get_level_values(0) != high_corr.index.get_level_values(1)]
high_corr_df = pd.DataFrame(high_corr, columns=["Correlation"])
st.dataframe(high_corr_df)
# Download correlation table as CSV
st.download_button(
label="Download Correlation Table (CSV)",
data=high_corr_df.to_csv(index=True),
file_name="correlation_table.csv",
mime="text/csv"
)
# Select target variable
target = st.selectbox("Select Target Variable", df.columns)
features = [col for col in df.columns if col != target]
X = df[features]
y = df[target]
if len(y.unique()) > 1: # Ensure the target variable has at least two unique classes/values
if y.dtype == 'object' or len(y.unique()) <= 10: # Classification
st.subheader("Classification Model Training")
classifiers = {
'Logistic Regression': LogisticRegression(max_iter=2000),
'Decision Tree': DecisionTreeClassifier(),
'Random Forest': RandomForestClassifier(),
'Support Vector Machine (SVM)': SVC(),
'K-Nearest Neighbors (k-NN)': KNeighborsClassifier(),
'Naive Bayes': GaussianNB()
}
metrics = []
train_size = st.slider("Select Training Size", min_value=0.1, max_value=0.9, value=0.8)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=1-train_size, stratify=y, random_state=42
)
for name, classifier in classifiers.items():
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
metrics.append({
'Model': name,
'Accuracy': round(accuracy_score(y_test, y_pred), 2),
'Precision': round(precision_score(y_test, y_pred, zero_division=1, average='macro'), 2),
'Recall': round(recall_score(y_test, y_pred, zero_division=1, average='macro'), 2),
'F1-Score': round(f1_score(y_test, y_pred, zero_division=1, average='macro'), 2)
})
metrics_df = pd.DataFrame(metrics)
st.subheader("Classification Model Performance Metrics")
st.dataframe(metrics_df)
# Save metrics as PNG (table form)
fig, ax = plt.subplots(figsize=(8, 4))
ax.axis('tight')
ax.axis('off')
table = plt.table(cellText=metrics_df.values, colLabels=metrics_df.columns, cellLoc='center', loc='center')
table.auto_set_font_size(False)
table.set_fontsize(10)
table.auto_set_column_width(col=list(range(len(metrics_df.columns))))
buf = BytesIO()
fig.savefig(buf, format="png")
buf.seek(0)
st.download_button(
label="Download Classification Metrics Table as PNG",
data=buf,
file_name="classification_metrics_table.png",
mime="image/png"
)
# Visualization (Bar Graphs for Classification)
st.subheader("Classification Model Performance Metrics Graph")
metrics_df.set_index('Model', inplace=True)
ax = metrics_df.plot(kind='bar', figsize=(10, 6), colormap='coolwarm', rot=45)
plt.title("Classification Models - Performance Metrics")
plt.ylabel("Scores")
plt.xlabel("Models")
st.pyplot(plt)
# Download button for the bar graph
buf = BytesIO()
ax.figure.savefig(buf, format="png")
buf.seek(0)
st.download_button(
label="Download Classification Performance Graph as PNG",
data=buf,
file_name="classification_performance_graph.png",
mime="image/png"
)
else: # Regression
st.subheader("Regression Model Training")
regressors = {
'Linear Regression': LinearRegression(),
'Decision Tree Regressor': DecisionTreeRegressor(),
'Random Forest Regressor': RandomForestRegressor(),
'Support Vector Regressor (SVR)': SVR(),
'K-Nearest Neighbors Regressor (k-NN)': KNeighborsRegressor()
}
regression_metrics = []
train_size = st.slider("Select Training Size", min_value=0.1, max_value=0.9, value=0.8)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=1-train_size, random_state=42
)
for name, regressor in regressors.items():
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
regression_metrics.append({
'Model': name,
'Mean Squared Error (MSE)': round(mean_squared_error(y_test, y_pred), 2),
'Mean Absolute Error (MAE)': round(mean_absolute_error(y_test, y_pred), 2),
'R² Score': round(r2_score(y_test, y_pred), 2)
})
regression_metrics_df = pd.DataFrame(regression_metrics)
st.subheader("Regression Model Performance Metrics")
st.dataframe(regression_metrics_df)
# Save metrics as PNG (table form)
fig, ax = plt.subplots(figsize=(8, 4))
ax.axis('tight')
ax.axis('off')
table = plt.table(cellText=regression_metrics_df.values, colLabels=regression_metrics_df.columns, cellLoc='center', loc='center')
table.auto_set_font_size(False)
table.set_fontsize(10)
table.auto_set_column_width(col=list(range(len(regression_metrics_df.columns))))
buf = BytesIO()
fig.savefig(buf, format="png")
buf.seek(0)
st.download_button(
label="Download Regression Metrics Table as PNG",
data=buf,
file_name="regression_metrics_table.png",
mime="image/png"
)
# Visualization (Bar Graphs for Regression)
st.subheader("Regression Model Performance Metrics Graph")
regression_metrics_df.set_index('Model', inplace=True)
ax = regression_metrics_df.plot(kind='bar', figsize=(10, 6), colormap='coolwarm', rot=45)
plt.title("Regression Models - Performance Metrics")
plt.ylabel("Scores")
plt.xlabel("Models")
st.pyplot(plt)
# Download button for the bar graph
buf = BytesIO()
ax.figure.savefig(buf, format="png")
buf.seek(0)
st.download_button(
label="Download Regression Performance Graph as PNG",
data=buf,
file_name="regression_performance_graph.png",
mime="image/png"
)
else:
st.error("The target variable must contain at least two unique values for classification or regression. Please check your dataset.")
|