saherPervaiz commited on
Commit
9d542da
·
verified ·
1 Parent(s): c002b05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +141 -66
app.py CHANGED
@@ -1,7 +1,5 @@
1
  import streamlit as st
2
  import pandas as pd
3
- import matplotlib.pyplot as plt
4
- import io
5
  from sklearn.model_selection import train_test_split
6
  from sklearn.preprocessing import LabelEncoder
7
  from sklearn.ensemble import RandomForestClassifier
@@ -11,40 +9,9 @@ from sklearn.neighbors import KNeighborsClassifier
11
  from sklearn.tree import DecisionTreeClassifier
12
  from sklearn.naive_bayes import GaussianNB
13
  from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
14
- from tabulate import tabulate
15
-
16
- # Function to convert DataFrame to Excel format
17
- def to_excel(df):
18
- output = io.BytesIO()
19
- with pd.ExcelWriter(output, engine='openpyxl') as writer:
20
- df.to_excel(writer, index=False, sheet_name='Cleaned Dataset')
21
- output.seek(0)
22
- return output
23
-
24
- # Function to save table as PNG with bold headings
25
- def save_table_as_png(df):
26
- fig, ax = plt.subplots(figsize=(8, 6))
27
- ax.axis('tight')
28
- ax.axis('off')
29
-
30
- # Create a table from the DataFrame
31
- table = ax.table(cellText=df.values, colLabels=df.columns, loc='center', cellLoc='center')
32
-
33
- # Set the font size and bold the header row
34
- table.auto_set_font_size(False)
35
- table.set_fontsize(10)
36
- table.scale(1.2, 1.2)
37
-
38
- # Bold the column headers
39
- for (i, j) in zip(range(len(df.columns)), table[0]):
40
- table[0, j].set_text_props(weight='bold') # Make column headers bold
41
-
42
- # Save the table as a PNG image
43
- img_path = "/tmp/model_report.png"
44
- plt.savefig(img_path, format="png", bbox_inches="tight")
45
- plt.close(fig)
46
-
47
- return img_path
48
 
49
  # File uploader
50
  st.title("Model Training with Metrics")
@@ -62,13 +29,65 @@ if uploaded_file is not None:
62
  if df.empty:
63
  st.warning("The dataset is empty. Please upload a valid CSV file.")
64
  else:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  target = st.selectbox("Select Target Variable", df.columns)
66
  features = [col for col in df.columns if col != target]
67
  X = df[features]
68
  y = df[target]
69
 
70
- # Determine if the target is continuous or categorical
71
- is_classification = y.dtype == 'object' or len(y.unique()) <= 10 # If target is categorical or has few unique values, treat as classification
 
 
 
 
 
 
 
 
 
72
 
73
  # Ensure there is enough data before proceeding with train-test split
74
  if len(X) == 0 or len(y) == 0:
@@ -116,45 +135,101 @@ if uploaded_file is not None:
116
  # Create a metrics DataFrame
117
  metrics_df = pd.DataFrame(metrics)
118
 
119
- # Add bold formatting to the headers for tabulate
120
- bold_headers = [f"\033[1m{header}\033[0m" for header in metrics_df.columns]
121
-
122
- # Format table with tabulate
123
- table = tabulate(
124
- metrics_df,
125
- headers=bold_headers,
126
- tablefmt="fancy_grid",
127
- showindex=False,
128
- numalign="center",
129
- stralign="center"
130
- )
131
-
132
- # Display results in Streamlit
133
  st.subheader("Model Performance Metrics")
134
- st.markdown(f"**Model Performance Metrics**")
135
- st.text(table)
 
 
136
 
137
- # Option to download the model performance metrics (Results Table)
138
  st.download_button(
139
- label="Download Model Report (Excel)",
140
- data=to_excel(metrics_df), # The metrics dataframe
 
 
 
 
 
 
 
 
141
  file_name="model_report.xlsx",
142
  mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
143
  )
144
 
145
- # Option to download the cleaned dataset
146
  st.download_button(
147
- label="Download Cleaned Dataset (Excel)",
148
- data=to_excel(df), # The cleaned dataset is 'df'
149
- file_name="cleaned_dataset.xlsx",
150
- mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
151
  )
152
 
153
- # Option to download the report as PNG
154
- img_path = save_table_as_png(metrics_df)
155
- with open(img_path, "rb") as file:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
  st.download_button(
157
- label="Download Model Report (PNG)",
158
  data=file,
159
  file_name="model_report.png",
160
  mime="image/png"
 
1
  import streamlit as st
2
  import pandas as pd
 
 
3
  from sklearn.model_selection import train_test_split
4
  from sklearn.preprocessing import LabelEncoder
5
  from sklearn.ensemble import RandomForestClassifier
 
9
  from sklearn.tree import DecisionTreeClassifier
10
  from sklearn.naive_bayes import GaussianNB
11
  from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
12
+ import numpy as np
13
+ import matplotlib.pyplot as plt
14
+ import seaborn as sns
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  # File uploader
17
  st.title("Model Training with Metrics")
 
29
  if df.empty:
30
  st.warning("The dataset is empty. Please upload a valid CSV file.")
31
  else:
32
+ # Handle Null Values (Missing Data)
33
+ st.write("Handling Missing (Null) Values:")
34
+ # Option to drop rows with null values or fill them
35
+ fill_method = st.selectbox("Choose how to handle missing values", ["Drop rows", "Fill with mean/median"])
36
+ if fill_method == "Drop rows":
37
+ df = df.dropna()
38
+ elif fill_method == "Fill with mean/median":
39
+ for col in df.columns:
40
+ if df[col].dtype in ['float64', 'int64']:
41
+ df[col].fillna(df[col].mean(), inplace=True) # For numeric columns, fill with mean
42
+ else:
43
+ df[col].fillna(df[col].mode()[0], inplace=True) # For categorical columns, fill with mode
44
+
45
+ # Handle Outliers using IQR method
46
+ st.write("Handling Outliers:")
47
+ # Define function to remove outliers using IQR
48
+ def remove_outliers_iqr(dataframe):
49
+ Q1 = dataframe.quantile(0.25)
50
+ Q3 = dataframe.quantile(0.75)
51
+ IQR = Q3 - Q1
52
+ # Filter out rows that are outside the IQR range
53
+ return dataframe[~((dataframe < (Q1 - 1.5 * IQR)) | (dataframe > (Q3 + 1.5 * IQR))).any(axis=1)]
54
+
55
+ # Remove outliers from the numerical columns
56
+ df = remove_outliers_iqr(df)
57
+
58
+ # Handle Extreme Values by Capping (Winsorization)
59
+ st.write("Handling Extreme Values (Capping):")
60
+ def cap_extreme_values(dataframe):
61
+ for col in dataframe.select_dtypes(include=[np.number]).columns:
62
+ # Define the thresholds for extreme values (95th percentile and 5th percentile)
63
+ lower_limit = dataframe[col].quantile(0.05)
64
+ upper_limit = dataframe[col].quantile(0.95)
65
+ # Cap the extreme values
66
+ dataframe[col] = np.clip(dataframe[col], lower_limit, upper_limit)
67
+ return dataframe
68
+
69
+ df = cap_extreme_values(df)
70
+
71
+ # Show cleaned dataset
72
+ st.write("Cleaned Dataset:")
73
+ st.dataframe(df)
74
+
75
  target = st.selectbox("Select Target Variable", df.columns)
76
  features = [col for col in df.columns if col != target]
77
  X = df[features]
78
  y = df[target]
79
 
80
+ # Label Encoding for categorical columns
81
+ label_encoder = LabelEncoder()
82
+
83
+ # Encode the target variable (if it's categorical)
84
+ if y.dtype == 'object' or len(y.unique()) <= 10: # If the target variable is categorical
85
+ y = label_encoder.fit_transform(y)
86
+
87
+ # Encode categorical feature columns (if any)
88
+ for col in X.columns:
89
+ if X[col].dtype == 'object' or len(X[col].unique()) <= 10: # If the column is categorical
90
+ X[col] = label_encoder.fit_transform(X[col])
91
 
92
  # Ensure there is enough data before proceeding with train-test split
93
  if len(X) == 0 or len(y) == 0:
 
135
  # Create a metrics DataFrame
136
  metrics_df = pd.DataFrame(metrics)
137
 
138
+ # Display results in a table using st.dataframe
 
 
 
 
 
 
 
 
 
 
 
 
 
139
  st.subheader("Model Performance Metrics")
140
+ st.dataframe(metrics_df)
141
+
142
+ # Download options
143
+ st.subheader("Download Model Performance Report in Different Formats")
144
 
145
+ # CSV
146
  st.download_button(
147
+ label="Download as CSV",
148
+ data=metrics_df.to_csv(index=False),
149
+ file_name="model_report.csv",
150
+ mime="text/csv"
151
+ )
152
+
153
+ # Excel
154
+ st.download_button(
155
+ label="Download as Excel",
156
+ data=metrics_df.to_excel(index=False, engine='openpyxl'),
157
  file_name="model_report.xlsx",
158
  mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
159
  )
160
 
161
+ # JSON
162
  st.download_button(
163
+ label="Download as JSON",
164
+ data=metrics_df.to_json(orient='records'),
165
+ file_name="model_report.json",
166
+ mime="application/json"
167
  )
168
 
169
+ # PDF (using `fpdf` library)
170
+ from fpdf import FPDF
171
+
172
+ def generate_pdf(df):
173
+ pdf = FPDF()
174
+ pdf.add_page()
175
+ pdf.set_font("Arial", size=12)
176
+ pdf.cell(200, 10, txt="Model Performance Report", ln=True, align="C")
177
+ pdf.ln(10)
178
+
179
+ # Add table header
180
+ pdf.set_font("Arial", style='B', size=10)
181
+ for header in df.columns:
182
+ pdf.cell(40, 10, header, border=1)
183
+ pdf.ln()
184
+
185
+ # Add table rows
186
+ pdf.set_font("Arial", size=10)
187
+ for row in df.values:
188
+ for value in row:
189
+ pdf.cell(40, 10, str(value), border=1)
190
+ pdf.ln()
191
+
192
+ return pdf.output(dest='S').encode('latin1')
193
+
194
+ # PDF download
195
+ st.download_button(
196
+ label="Download as PDF",
197
+ data=generate_pdf(metrics_df),
198
+ file_name="model_report.pdf",
199
+ mime="application/pdf"
200
+ )
201
+
202
+ # Option to download the dataset
203
+ st.download_button(
204
+ label="Download Dataset",
205
+ data=df.to_csv(index=False),
206
+ file_name="dataset.csv",
207
+ mime="text/csv"
208
+ )
209
+
210
+ # Generate and download PNG report
211
+ st.subheader("Download Report as PNG")
212
+
213
+ # Create table plot using matplotlib
214
+ fig, ax = plt.subplots(figsize=(12, 4)) # Adjust the figure size to match the table's layout
215
+ ax.axis('tight')
216
+ ax.axis('off')
217
+ table_data = metrics_df.values
218
+ table_columns = metrics_df.columns.tolist()
219
+
220
+ table = ax.table(cellText=table_data, colLabels=table_columns, loc='center', cellLoc='center', colLoc='center')
221
+ table.auto_set_font_size(False)
222
+ table.set_fontsize(10)
223
+ table.scale(1.2, 1.2) # Adjust the scale for better appearance
224
+
225
+ # Save the table as a PNG file
226
+ png_file = "model_report.png"
227
+ fig.savefig(png_file, bbox_inches='tight', dpi=300)
228
+
229
+ # Provide a download button for the PNG file
230
+ with open(png_file, "rb") as file:
231
  st.download_button(
232
+ label="Download as PNG",
233
  data=file,
234
  file_name="model_report.png",
235
  mime="image/png"