Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,198 +1,34 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
from sklearn.preprocessing import LabelEncoder
|
| 5 |
-
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
| 6 |
-
from sklearn.linear_model import LogisticRegression, LinearRegression
|
| 7 |
-
from sklearn.svm import SVC, SVR
|
| 8 |
-
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
|
| 9 |
-
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
|
| 10 |
-
from sklearn.naive_bayes import GaussianNB
|
| 11 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, mean_squared_error, mean_absolute_error, r2_score
|
| 12 |
-
import numpy as np
|
| 13 |
-
import matplotlib.pyplot as plt
|
| 14 |
-
import seaborn as sns
|
| 15 |
-
from io import BytesIO
|
| 16 |
|
| 17 |
-
|
| 18 |
-
st.title("Model Training with Metrics and Correlation Heatmap")
|
| 19 |
-
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
|
| 20 |
-
|
| 21 |
-
if uploaded_file is not None:
|
| 22 |
-
df = pd.read_csv(uploaded_file)
|
| 23 |
-
|
| 24 |
-
# Show the dataset
|
| 25 |
-
st.write("Dataset:")
|
| 26 |
-
st.dataframe(df)
|
| 27 |
-
|
| 28 |
-
# Convert categorical (str) data to numerical
|
| 29 |
-
st.write("Converting Categorical Columns to Numerical Values:")
|
| 30 |
-
label_encoder = LabelEncoder()
|
| 31 |
-
|
| 32 |
-
for col in df.columns:
|
| 33 |
-
if df[col].dtype == 'object' or len(df[col].unique()) <= 10:
|
| 34 |
-
st.write(f"Encoding Column: **{col}**")
|
| 35 |
-
df[col] = label_encoder.fit_transform(df[col])
|
| 36 |
-
|
| 37 |
-
# Display the dataset after conversion
|
| 38 |
-
st.write("Dataset After Conversion:")
|
| 39 |
-
st.dataframe(df)
|
| 40 |
-
|
| 41 |
-
# Handle Null Values (Missing Data)
|
| 42 |
-
st.write("Handling Missing (Null) Values:")
|
| 43 |
-
fill_method = st.selectbox("Choose how to handle missing values", ["Drop rows", "Fill with mean/median"])
|
| 44 |
-
if fill_method == "Drop rows":
|
| 45 |
-
df = df.dropna()
|
| 46 |
-
elif fill_method == "Fill with mean/median":
|
| 47 |
-
for col in df.columns:
|
| 48 |
-
if df[col].dtype in ['float64', 'int64']:
|
| 49 |
-
df[col].fillna(df[col].mean(), inplace=True)
|
| 50 |
-
else:
|
| 51 |
-
df[col].fillna(df[col].mode()[0], inplace=True)
|
| 52 |
-
|
| 53 |
-
# Handle Outliers using IQR method
|
| 54 |
-
st.write("Handling Outliers:")
|
| 55 |
-
def remove_outliers_iqr(dataframe):
|
| 56 |
-
Q1 = dataframe.quantile(0.25)
|
| 57 |
-
Q3 = dataframe.quantile(0.75)
|
| 58 |
-
IQR = Q3 - Q1
|
| 59 |
-
return dataframe[~((dataframe < (Q1 - 1.5 * IQR)) | (dataframe > (Q3 + 1.5 * IQR))).any(axis=1)]
|
| 60 |
-
|
| 61 |
-
df = remove_outliers_iqr(df)
|
| 62 |
-
|
| 63 |
-
# Cap Extreme Values
|
| 64 |
-
st.write("Handling Extreme Values (Capping):")
|
| 65 |
-
def cap_extreme_values(dataframe):
|
| 66 |
-
for col in dataframe.select_dtypes(include=[np.number]).columns:
|
| 67 |
-
lower_limit = dataframe[col].quantile(0.05)
|
| 68 |
-
upper_limit = dataframe[col].quantile(0.95)
|
| 69 |
-
dataframe[col] = np.clip(dataframe[col], lower_limit, upper_limit)
|
| 70 |
-
return dataframe
|
| 71 |
-
|
| 72 |
-
df = cap_extreme_values(df)
|
| 73 |
-
|
| 74 |
-
# Show cleaned dataset
|
| 75 |
-
st.write("Cleaned Dataset:")
|
| 76 |
-
st.dataframe(df)
|
| 77 |
-
|
| 78 |
-
# Add clean data download option
|
| 79 |
-
st.subheader("Download Cleaned Dataset")
|
| 80 |
-
st.download_button(
|
| 81 |
-
label="Download Cleaned Dataset (CSV)",
|
| 82 |
-
data=df.to_csv(index=False),
|
| 83 |
-
file_name="cleaned_dataset.csv",
|
| 84 |
-
mime="text/csv"
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
# Correlation Heatmap
|
| 88 |
-
st.subheader("Correlation Heatmap")
|
| 89 |
-
corr = df.corr()
|
| 90 |
-
plt.figure(figsize=(10, 8))
|
| 91 |
-
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f", cbar=True)
|
| 92 |
-
st.pyplot(plt)
|
| 93 |
-
|
| 94 |
-
# Save heatmap as PNG
|
| 95 |
-
buf = BytesIO()
|
| 96 |
-
plt.savefig(buf, format="png")
|
| 97 |
-
buf.seek(0)
|
| 98 |
-
st.download_button(
|
| 99 |
-
label="Download Correlation Heatmap as PNG",
|
| 100 |
-
data=buf,
|
| 101 |
-
file_name="correlation_heatmap.png",
|
| 102 |
-
mime="image/png"
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
# Highlight highly correlated pairs
|
| 106 |
-
st.subheader("Highly Correlated Features")
|
| 107 |
-
high_corr = corr.abs().unstack().sort_values(ascending=False).drop_duplicates()
|
| 108 |
-
high_corr = high_corr[high_corr >= 0.8]
|
| 109 |
-
high_corr_df = high_corr[high_corr.index.get_level_values(0) != high_corr.index.get_level_values(1)]
|
| 110 |
-
st.write(high_corr_df)
|
| 111 |
-
|
| 112 |
-
target = st.selectbox("Select Target Variable", df.columns)
|
| 113 |
-
features = [col for col in df.columns if col != target]
|
| 114 |
-
X = df[features]
|
| 115 |
-
y = df[target]
|
| 116 |
-
|
| 117 |
if y.dtype == 'object' or len(y.unique()) <= 10: # Categorical target (classification)
|
| 118 |
-
|
| 119 |
-
classifiers = {
|
| 120 |
-
'Logistic Regression': LogisticRegression(max_iter=5000, solver='saga', penalty='l1'),
|
| 121 |
-
'Decision Tree': DecisionTreeClassifier(),
|
| 122 |
-
'Random Forest': RandomForestClassifier(),
|
| 123 |
-
'Support Vector Machine (SVM)': SVC(),
|
| 124 |
-
'K-Nearest Neighbors (k-NN)': KNeighborsClassifier(),
|
| 125 |
-
'Naive Bayes': GaussianNB()
|
| 126 |
-
}
|
| 127 |
-
|
| 128 |
-
metrics = []
|
| 129 |
-
train_size = st.slider("Select Training Size", min_value=0.1, max_value=0.9, value=0.8)
|
| 130 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1-train_size, random_state=42)
|
| 131 |
-
|
| 132 |
-
for name, classifier in classifiers.items():
|
| 133 |
-
classifier.fit(X_train, y_train)
|
| 134 |
-
y_pred = classifier.predict(X_test)
|
| 135 |
-
metrics.append({
|
| 136 |
-
'Model': name,
|
| 137 |
-
'Accuracy': round(accuracy_score(y_test, y_pred), 2),
|
| 138 |
-
'Precision': round(precision_score(y_test, y_pred, zero_division=1, average='macro'), 2),
|
| 139 |
-
'Recall': round(recall_score(y_test, y_pred, zero_division=1, average='macro'), 2),
|
| 140 |
-
'F1-Score': round(f1_score(y_test, y_pred, zero_division=1, average='macro'), 2)
|
| 141 |
-
})
|
| 142 |
-
|
| 143 |
-
metrics_df = pd.DataFrame(metrics)
|
| 144 |
-
st.subheader("Classification Model Performance Metrics")
|
| 145 |
-
st.dataframe(metrics_df)
|
| 146 |
-
|
| 147 |
-
# Save metrics as PNG
|
| 148 |
-
fig, ax = plt.subplots()
|
| 149 |
sns.barplot(data=metrics_df, x="Model", y="Accuracy", ax=ax)
|
| 150 |
ax.set_title("Classification Model Performance")
|
|
|
|
|
|
|
| 151 |
buf = BytesIO()
|
| 152 |
fig.savefig(buf, format="png")
|
| 153 |
buf.seek(0)
|
|
|
|
| 154 |
st.download_button(
|
| 155 |
label="Download Classification Report as PNG",
|
| 156 |
data=buf,
|
| 157 |
file_name="classification_report.png",
|
| 158 |
mime="image/png"
|
| 159 |
)
|
| 160 |
-
|
| 161 |
else: # Continuous target (regression)
|
| 162 |
-
|
| 163 |
-
regressors = {
|
| 164 |
-
'Linear Regression': LinearRegression(),
|
| 165 |
-
'Decision Tree Regressor': DecisionTreeRegressor(),
|
| 166 |
-
'Random Forest Regressor': RandomForestRegressor(),
|
| 167 |
-
'Support Vector Regressor (SVR)': SVR(),
|
| 168 |
-
'K-Nearest Neighbors Regressor (k-NN)': KNeighborsRegressor()
|
| 169 |
-
}
|
| 170 |
-
|
| 171 |
-
regression_metrics = []
|
| 172 |
-
train_size = st.slider("Select Training Size", min_value=0.1, max_value=0.9, value=0.8)
|
| 173 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1-train_size, random_state=42)
|
| 174 |
-
|
| 175 |
-
for name, regressor in regressors.items():
|
| 176 |
-
regressor.fit(X_train, y_train)
|
| 177 |
-
y_pred = regressor.predict(X_test)
|
| 178 |
-
regression_metrics.append({
|
| 179 |
-
'Model': name,
|
| 180 |
-
'Mean Squared Error (MSE)': round(mean_squared_error(y_test, y_pred), 2),
|
| 181 |
-
'Mean Absolute Error (MAE)': round(mean_absolute_error(y_test, y_pred), 2),
|
| 182 |
-
'R² Score': round(r2_score(y_test, y_pred), 2)
|
| 183 |
-
})
|
| 184 |
-
|
| 185 |
-
regression_metrics_df = pd.DataFrame(regression_metrics)
|
| 186 |
-
st.subheader("Regression Model Performance Metrics")
|
| 187 |
-
st.dataframe(regression_metrics_df)
|
| 188 |
-
|
| 189 |
-
# Save metrics as PNG
|
| 190 |
-
fig, ax = plt.subplots()
|
| 191 |
sns.barplot(data=regression_metrics_df, x="Model", y="R² Score", ax=ax)
|
| 192 |
ax.set_title("Regression Model Performance")
|
|
|
|
|
|
|
| 193 |
buf = BytesIO()
|
| 194 |
fig.savefig(buf, format="png")
|
| 195 |
buf.seek(0)
|
|
|
|
| 196 |
st.download_button(
|
| 197 |
label="Download Regression Report as PNG",
|
| 198 |
data=buf,
|
|
|
|
| 1 |
+
# After generating the metrics (classification or regression)
|
| 2 |
+
# Add a button to generate the performance report as an image
|
| 3 |
+
generate_report_button = st.button("Generate Performance Report as Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
if generate_report_button:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
if y.dtype == 'object' or len(y.unique()) <= 10: # Categorical target (classification)
|
| 7 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
sns.barplot(data=metrics_df, x="Model", y="Accuracy", ax=ax)
|
| 9 |
ax.set_title("Classification Model Performance")
|
| 10 |
+
|
| 11 |
+
# Save the classification report as PNG
|
| 12 |
buf = BytesIO()
|
| 13 |
fig.savefig(buf, format="png")
|
| 14 |
buf.seek(0)
|
| 15 |
+
|
| 16 |
st.download_button(
|
| 17 |
label="Download Classification Report as PNG",
|
| 18 |
data=buf,
|
| 19 |
file_name="classification_report.png",
|
| 20 |
mime="image/png"
|
| 21 |
)
|
|
|
|
| 22 |
else: # Continuous target (regression)
|
| 23 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
sns.barplot(data=regression_metrics_df, x="Model", y="R² Score", ax=ax)
|
| 25 |
ax.set_title("Regression Model Performance")
|
| 26 |
+
|
| 27 |
+
# Save the regression report as PNG
|
| 28 |
buf = BytesIO()
|
| 29 |
fig.savefig(buf, format="png")
|
| 30 |
buf.seek(0)
|
| 31 |
+
|
| 32 |
st.download_button(
|
| 33 |
label="Download Regression Report as PNG",
|
| 34 |
data=buf,
|