Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
164deee
1
Parent(s):
4fa21de
init
Browse files- __lib__/app.py +0 -0
- __lib__/i18n/en.pyc +0 -0
- __lib__/nfsw.pyc +0 -0
- __lib__/util.pyc +0 -0
- pipeline.py +206 -32
- scheduling_omni.py +634 -0
__lib__/app.py
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
__lib__/i18n/en.pyc
CHANGED
|
Binary files a/__lib__/i18n/en.pyc and b/__lib__/i18n/en.pyc differ
|
|
|
__lib__/nfsw.pyc
CHANGED
|
Binary files a/__lib__/nfsw.pyc and b/__lib__/nfsw.pyc differ
|
|
|
__lib__/util.pyc
CHANGED
|
Binary files a/__lib__/util.pyc and b/__lib__/util.pyc differ
|
|
|
pipeline.py
CHANGED
|
@@ -17,6 +17,7 @@ from diffusers import DiffusionPipeline, DDIMScheduler
|
|
| 17 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 18 |
from diffusers.models.modeling_utils import ModelMixin
|
| 19 |
from diffusers.utils import BaseOutput
|
|
|
|
| 20 |
|
| 21 |
# Optimization imports
|
| 22 |
try:
|
|
@@ -729,6 +730,86 @@ class OmniMMDitV2(ModelMixin, PreTrainedModel):
|
|
| 729 |
|
| 730 |
return BaseOutput(sample=output)
|
| 731 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 732 |
# -----------------------------------------------------------------------------
|
| 733 |
# 5. The "Fancy" Pipeline
|
| 734 |
# -----------------------------------------------------------------------------
|
|
@@ -744,7 +825,7 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 744 |
tokenizer: CLIPTokenizer
|
| 745 |
text_encoder: CLIPTextModel
|
| 746 |
vae: Any # AutoencoderKL
|
| 747 |
-
scheduler: DDIMScheduler
|
| 748 |
|
| 749 |
_optional_components = ["visual_encoder"]
|
| 750 |
|
|
@@ -754,7 +835,7 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 754 |
vae: Any,
|
| 755 |
text_encoder: CLIPTextModel,
|
| 756 |
tokenizer: CLIPTokenizer,
|
| 757 |
-
scheduler: DDIMScheduler,
|
| 758 |
visual_encoder: Optional[Any] = None,
|
| 759 |
):
|
| 760 |
super().__init__()
|
|
@@ -792,6 +873,12 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 792 |
|
| 793 |
self._is_compiled = False
|
| 794 |
self._is_fp8_enabled = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 795 |
|
| 796 |
def enable_fp8_quantization(self):
|
| 797 |
"""Enable FP8 quantization for faster inference"""
|
|
@@ -860,6 +947,29 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 860 |
|
| 861 |
return self
|
| 862 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 863 |
@torch.no_grad()
|
| 864 |
def __call__(
|
| 865 |
self,
|
|
@@ -880,6 +990,7 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 880 |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 881 |
callback_steps: int = 1,
|
| 882 |
use_optimized_inference: bool = True,
|
|
|
|
| 883 |
**kwargs,
|
| 884 |
):
|
| 885 |
# Use optimized inference context
|
|
@@ -905,6 +1016,7 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 905 |
return_dict=return_dict,
|
| 906 |
callback=callback,
|
| 907 |
callback_steps=callback_steps,
|
|
|
|
| 908 |
**kwargs,
|
| 909 |
)
|
| 910 |
|
|
@@ -926,6 +1038,7 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 926 |
return_dict: bool = True,
|
| 927 |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 928 |
callback_steps: int = 1,
|
|
|
|
| 929 |
**kwargs,
|
| 930 |
):
|
| 931 |
# Validate and set default dimensions
|
|
@@ -977,8 +1090,15 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 977 |
visual_embeddings_list.append(vis_emb)
|
| 978 |
|
| 979 |
# Prepare timesteps
|
| 980 |
-
self.scheduler
|
| 981 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 982 |
|
| 983 |
# Initialize latent space
|
| 984 |
num_channels_latents = self.model.config.in_channels
|
|
@@ -989,34 +1109,88 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 989 |
latents = torch.randn(shape, generator=generator, device=self.device, dtype=text_embeddings.dtype)
|
| 990 |
latents = latents * self.scheduler.init_noise_sigma
|
| 991 |
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
|
| 995 |
-
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
|
| 1007 |
-
|
| 1008 |
-
|
| 1009 |
-
|
| 1010 |
-
|
| 1011 |
-
|
| 1012 |
-
|
| 1013 |
-
|
| 1014 |
-
|
| 1015 |
-
|
| 1016 |
-
|
| 1017 |
-
|
| 1018 |
-
|
| 1019 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1020 |
|
| 1021 |
# Decode latents with proper post-processing
|
| 1022 |
if output_type == "latent":
|
|
|
|
| 17 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 18 |
from diffusers.models.modeling_utils import ModelMixin
|
| 19 |
from diffusers.utils import BaseOutput
|
| 20 |
+
from .scheduling_omni import OmniScheduler
|
| 21 |
|
| 22 |
# Optimization imports
|
| 23 |
try:
|
|
|
|
| 730 |
|
| 731 |
return BaseOutput(sample=output)
|
| 732 |
|
| 733 |
+
# -----------------------------------------------------------------------------
|
| 734 |
+
# 4.5 π-Flow Policy Network (coarse trajectory predictor)
|
| 735 |
+
# -----------------------------------------------------------------------------
|
| 736 |
+
|
| 737 |
+
|
| 738 |
+
class PiFlowPolicyNetwork(nn.Module):
|
| 739 |
+
"""
|
| 740 |
+
Lightweight π-Flow policy network: predicts multi-step velocity trajectories in one forward pass for few-step sampling.
|
| 741 |
+
Relies only on text/visual global aggregated features + time embeddings and outputs velocity fields matching latent shape.
|
| 742 |
+
"""
|
| 743 |
+
|
| 744 |
+
def __init__(
|
| 745 |
+
self,
|
| 746 |
+
text_hidden_size: int,
|
| 747 |
+
visual_embed_dim: int,
|
| 748 |
+
latent_channels: int,
|
| 749 |
+
hidden_size: int = 1024,
|
| 750 |
+
):
|
| 751 |
+
super().__init__()
|
| 752 |
+
self.text_proj = nn.Linear(text_hidden_size, hidden_size)
|
| 753 |
+
self.vis_proj = nn.Linear(visual_embed_dim, hidden_size)
|
| 754 |
+
self.time_proj = nn.Sequential(
|
| 755 |
+
nn.Linear(1, hidden_size),
|
| 756 |
+
nn.SiLU(),
|
| 757 |
+
nn.Linear(hidden_size, hidden_size),
|
| 758 |
+
)
|
| 759 |
+
self.fuse = nn.Sequential(
|
| 760 |
+
nn.Linear(hidden_size * 3, hidden_size),
|
| 761 |
+
nn.SiLU(),
|
| 762 |
+
nn.Linear(hidden_size, latent_channels),
|
| 763 |
+
)
|
| 764 |
+
self.latent_channels = latent_channels
|
| 765 |
+
|
| 766 |
+
def forward(
|
| 767 |
+
self,
|
| 768 |
+
text_embeddings: torch.Tensor,
|
| 769 |
+
visual_embeddings_list: Optional[List[torch.Tensor]],
|
| 770 |
+
timesteps: torch.Tensor,
|
| 771 |
+
latent_shape: torch.Size,
|
| 772 |
+
) -> torch.Tensor:
|
| 773 |
+
"""
|
| 774 |
+
Args:
|
| 775 |
+
text_embeddings: [B, L, D_txt]
|
| 776 |
+
visual_embeddings_list: list of [B, L_vis, D_vis] or None
|
| 777 |
+
timesteps: [S] step values in [0,1]
|
| 778 |
+
latent_shape: target latent shape (B, C, ...)
|
| 779 |
+
Returns:
|
| 780 |
+
policy_velocities: [S, *latent_shape]
|
| 781 |
+
"""
|
| 782 |
+
device = text_embeddings.device
|
| 783 |
+
dtype = text_embeddings.dtype
|
| 784 |
+
batch_size = text_embeddings.shape[0]
|
| 785 |
+
|
| 786 |
+
text_ctx = text_embeddings.mean(dim=1)
|
| 787 |
+
|
| 788 |
+
if visual_embeddings_list:
|
| 789 |
+
vis_tokens = [v.mean(dim=1) for v in visual_embeddings_list]
|
| 790 |
+
vis_ctx = torch.stack(vis_tokens, dim=0).mean(dim=0)
|
| 791 |
+
else:
|
| 792 |
+
vis_ctx = torch.zeros_like(text_ctx)
|
| 793 |
+
|
| 794 |
+
txt_feat = self.text_proj(text_ctx)
|
| 795 |
+
vis_feat = self.vis_proj(vis_ctx.to(device=device, dtype=dtype))
|
| 796 |
+
|
| 797 |
+
time_feat = self.time_proj(timesteps.unsqueeze(-1).to(device=device, dtype=dtype))
|
| 798 |
+
|
| 799 |
+
velocities = []
|
| 800 |
+
for t_feat in time_feat:
|
| 801 |
+
fused = torch.cat([txt_feat, vis_feat, t_feat.expand_as(txt_feat)], dim=-1)
|
| 802 |
+
step_token = self.fuse(fused).tanh() # [B, C]
|
| 803 |
+
|
| 804 |
+
step_field = step_token
|
| 805 |
+
while len(step_field.shape) < len(latent_shape):
|
| 806 |
+
step_field = step_field.unsqueeze(-1)
|
| 807 |
+
step_field = step_field.expand(batch_size, *latent_shape[1:])
|
| 808 |
+
velocities.append(step_field)
|
| 809 |
+
|
| 810 |
+
policy_velocities = torch.stack(velocities, dim=0)
|
| 811 |
+
return policy_velocities
|
| 812 |
+
|
| 813 |
# -----------------------------------------------------------------------------
|
| 814 |
# 5. The "Fancy" Pipeline
|
| 815 |
# -----------------------------------------------------------------------------
|
|
|
|
| 825 |
tokenizer: CLIPTokenizer
|
| 826 |
text_encoder: CLIPTextModel
|
| 827 |
vae: Any # AutoencoderKL
|
| 828 |
+
scheduler: Union[DDIMScheduler, OmniScheduler]
|
| 829 |
|
| 830 |
_optional_components = ["visual_encoder"]
|
| 831 |
|
|
|
|
| 835 |
vae: Any,
|
| 836 |
text_encoder: CLIPTextModel,
|
| 837 |
tokenizer: CLIPTokenizer,
|
| 838 |
+
scheduler: Union[DDIMScheduler, OmniScheduler],
|
| 839 |
visual_encoder: Optional[Any] = None,
|
| 840 |
):
|
| 841 |
super().__init__()
|
|
|
|
| 873 |
|
| 874 |
self._is_compiled = False
|
| 875 |
self._is_fp8_enabled = False
|
| 876 |
+
self.policy_network = PiFlowPolicyNetwork(
|
| 877 |
+
text_hidden_size=self.text_encoder.config.hidden_size,
|
| 878 |
+
visual_embed_dim=self.model.config.visual_embed_dim,
|
| 879 |
+
latent_channels=self.model.config.in_channels,
|
| 880 |
+
hidden_size=min(1024, self.model.config.hidden_size),
|
| 881 |
+
)
|
| 882 |
|
| 883 |
def enable_fp8_quantization(self):
|
| 884 |
"""Enable FP8 quantization for faster inference"""
|
|
|
|
| 947 |
|
| 948 |
return self
|
| 949 |
|
| 950 |
+
def _predict_policy_trajectory(
|
| 951 |
+
self,
|
| 952 |
+
text_embeddings: torch.Tensor,
|
| 953 |
+
visual_embeddings: torch.Tensor,
|
| 954 |
+
device: torch.device,
|
| 955 |
+
total_steps: int,
|
| 956 |
+
) -> Optional[torch.Tensor]:
|
| 957 |
+
"""
|
| 958 |
+
Predict coarse-stage velocity trajectory in one shot using the π-Flow policy network.
|
| 959 |
+
"""
|
| 960 |
+
if self.policy_network is None or total_steps <= 0:
|
| 961 |
+
return None
|
| 962 |
+
# Keep policy network on the same device
|
| 963 |
+
self.policy_network = self.policy_network.to(device=device, dtype=text_embeddings.dtype)
|
| 964 |
+
time_grid = torch.linspace(0, 1, total_steps, device=device, dtype=text_embeddings.dtype)
|
| 965 |
+
time_grid = torch.linspace(0, 1, total_steps, device=self.device, dtype=text_embeddings.dtype)
|
| 966 |
+
return self.policy_network(
|
| 967 |
+
text_embeddings=text_embeddings.detach(),
|
| 968 |
+
visual_embeddings_list=visual_embeddings_list,
|
| 969 |
+
timesteps=time_grid,
|
| 970 |
+
latent_shape=latents.shape,
|
| 971 |
+
)
|
| 972 |
+
|
| 973 |
@torch.no_grad()
|
| 974 |
def __call__(
|
| 975 |
self,
|
|
|
|
| 990 |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 991 |
callback_steps: int = 1,
|
| 992 |
use_optimized_inference: bool = True,
|
| 993 |
+
use_pi_flow_policy: bool = False,
|
| 994 |
**kwargs,
|
| 995 |
):
|
| 996 |
# Use optimized inference context
|
|
|
|
| 1016 |
return_dict=return_dict,
|
| 1017 |
callback=callback,
|
| 1018 |
callback_steps=callback_steps,
|
| 1019 |
+
use_pi_flow_policy=use_pi_flow_policy,
|
| 1020 |
**kwargs,
|
| 1021 |
)
|
| 1022 |
|
|
|
|
| 1038 |
return_dict: bool = True,
|
| 1039 |
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 1040 |
callback_steps: int = 1,
|
| 1041 |
+
use_pi_flow_policy: bool = False,
|
| 1042 |
**kwargs,
|
| 1043 |
):
|
| 1044 |
# Validate and set default dimensions
|
|
|
|
| 1090 |
visual_embeddings_list.append(vis_emb)
|
| 1091 |
|
| 1092 |
# Prepare timesteps
|
| 1093 |
+
if isinstance(self.scheduler, OmniScheduler):
|
| 1094 |
+
# π-Flow / Flow Matching path
|
| 1095 |
+
self.scheduler.config.prediction_type = "velocity"
|
| 1096 |
+
self.scheduler.set_timesteps(num_inference_steps, device=self.device, use_karras_sigmas=True)
|
| 1097 |
+
total_steps = len(self.scheduler.timesteps) - 1
|
| 1098 |
+
else:
|
| 1099 |
+
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
| 1100 |
+
timesteps = self.scheduler.timesteps
|
| 1101 |
+
total_steps = len(timesteps)
|
| 1102 |
|
| 1103 |
# Initialize latent space
|
| 1104 |
num_channels_latents = self.model.config.in_channels
|
|
|
|
| 1109 |
latents = torch.randn(shape, generator=generator, device=self.device, dtype=text_embeddings.dtype)
|
| 1110 |
latents = latents * self.scheduler.init_noise_sigma
|
| 1111 |
|
| 1112 |
+
if isinstance(self.scheduler, OmniScheduler):
|
| 1113 |
+
policy_velocities = None
|
| 1114 |
+
if use_pi_flow_policy:
|
| 1115 |
+
policy_velocities = self._compute_policy_trajectory(
|
| 1116 |
+
text_embeddings=text_embeddings,
|
| 1117 |
+
visual_embeddings_list=visual_embeddings_list,
|
| 1118 |
+
latents=latents,
|
| 1119 |
+
total_steps=total_steps,
|
| 1120 |
+
)
|
| 1121 |
+
|
| 1122 |
+
with self.progress_bar(total=total_steps) as progress_bar:
|
| 1123 |
+
for step_idx in range(total_steps):
|
| 1124 |
+
t_val = self.scheduler.timesteps[step_idx]
|
| 1125 |
+
|
| 1126 |
+
use_policy_step = (
|
| 1127 |
+
use_pi_flow_policy and policy_velocities is not None and step_idx < self.scheduler.coarse_steps
|
| 1128 |
+
)
|
| 1129 |
+
|
| 1130 |
+
if use_policy_step:
|
| 1131 |
+
model_output = policy_velocities[step_idx]
|
| 1132 |
+
model_fn = None
|
| 1133 |
+
else:
|
| 1134 |
+
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
|
| 1135 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t_val)
|
| 1136 |
+
|
| 1137 |
+
with self.model_optimizer.autocast_context():
|
| 1138 |
+
noise_pred = self.model(
|
| 1139 |
+
hidden_states=latent_model_input,
|
| 1140 |
+
timestep=t_val,
|
| 1141 |
+
encoder_hidden_states=torch.cat([text_embeddings] * 2),
|
| 1142 |
+
visual_conditions=visual_embeddings_list * 2 if visual_embeddings_list else None,
|
| 1143 |
+
video_frames=num_frames
|
| 1144 |
+
).sample
|
| 1145 |
+
|
| 1146 |
+
if guidance_scale > 1.0:
|
| 1147 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1148 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1149 |
+
|
| 1150 |
+
model_output = noise_pred
|
| 1151 |
+
model_fn = None # extendable to second eval for higher-order solvers
|
| 1152 |
+
|
| 1153 |
+
step_output = self.scheduler.step(
|
| 1154 |
+
model_output=model_output,
|
| 1155 |
+
timestep=step_idx,
|
| 1156 |
+
sample=latents,
|
| 1157 |
+
model_fn=model_fn,
|
| 1158 |
+
)
|
| 1159 |
+
latents = step_output.prev_sample if hasattr(step_output, "prev_sample") else step_output[0]
|
| 1160 |
+
|
| 1161 |
+
if callback is not None and step_idx % callback_steps == 0:
|
| 1162 |
+
callback(step_idx, t_val, latents)
|
| 1163 |
+
|
| 1164 |
+
progress_bar.update()
|
| 1165 |
+
else:
|
| 1166 |
+
# Compatible with original DDIM/standard scheduler
|
| 1167 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1168 |
+
for i, t in enumerate(timesteps):
|
| 1169 |
+
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
|
| 1170 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1171 |
+
|
| 1172 |
+
# Use mixed precision autocast
|
| 1173 |
+
with self.model_optimizer.autocast_context():
|
| 1174 |
+
noise_pred = self.model(
|
| 1175 |
+
hidden_states=latent_model_input,
|
| 1176 |
+
timestep=t,
|
| 1177 |
+
encoder_hidden_states=torch.cat([text_embeddings] * 2),
|
| 1178 |
+
visual_conditions=visual_embeddings_list * 2 if visual_embeddings_list else None,
|
| 1179 |
+
video_frames=num_frames
|
| 1180 |
+
).sample
|
| 1181 |
+
|
| 1182 |
+
# Apply classifier-free guidance
|
| 1183 |
+
if guidance_scale > 1.0:
|
| 1184 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1185 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1186 |
+
|
| 1187 |
+
latents = self.scheduler.step(noise_pred, t, latents, eta=eta).prev_sample
|
| 1188 |
+
|
| 1189 |
+
# Call callback if provided
|
| 1190 |
+
if callback is not None and i % callback_steps == 0:
|
| 1191 |
+
callback(i, t, latents)
|
| 1192 |
+
|
| 1193 |
+
progress_bar.update()
|
| 1194 |
|
| 1195 |
# Decode latents with proper post-processing
|
| 1196 |
if output_type == "latent":
|
scheduling_omni.py
ADDED
|
@@ -0,0 +1,634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 OmniEdit Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
OmniScheduler: Unified Hybrid Flow-Diffusion Sampler
|
| 17 |
+
|
| 18 |
+
Key features:
|
| 19 |
+
1. Policy-driven velocity field inspired by π-Flow for few-step generation.
|
| 20 |
+
2. Multi-stage sampling (coarse → refine) to balance speed and detail.
|
| 21 |
+
3. High-order ODE solvers (RK2 / RK4) for faster convergence.
|
| 22 |
+
4. Hybrid flow-matching + diffusion sampling for stable trajectories.
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
import math
|
| 26 |
+
from dataclasses import dataclass
|
| 27 |
+
from typing import Optional, Tuple, Union, List
|
| 28 |
+
|
| 29 |
+
import torch
|
| 30 |
+
|
| 31 |
+
from ..configuration_utils import ConfigMixin, register_to_config
|
| 32 |
+
from ..utils import BaseOutput
|
| 33 |
+
from ..utils.torch_utils import randn_tensor
|
| 34 |
+
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class OmniSchedulerOutput(BaseOutput):
|
| 39 |
+
"""
|
| 40 |
+
Output container for OmniScheduler.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
prev_sample (`torch.Tensor`):
|
| 44 |
+
Sample at the previous timestep (x_{t-1}) for the next denoising step.
|
| 45 |
+
prev_sample_mean (`torch.Tensor`):
|
| 46 |
+
Mean estimate of the sample for inspection/debugging.
|
| 47 |
+
velocity (`torch.Tensor`, *optional*):
|
| 48 |
+
Policy-predicted velocity field for flow matching.
|
| 49 |
+
stage (`int`):
|
| 50 |
+
Current stage (0: coarse, 1: refine).
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
prev_sample: torch.Tensor
|
| 54 |
+
prev_sample_mean: torch.Tensor
|
| 55 |
+
velocity: Optional[torch.Tensor] = None
|
| 56 |
+
stage: int = 0
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class OmniScheduler(SchedulerMixin, ConfigMixin):
|
| 60 |
+
"""
|
| 61 |
+
`OmniScheduler` - Unified Hybrid Flow-Diffusion Sampler
|
| 62 |
+
|
| 63 |
+
Combines flow matching and high-order ODE solvers to achieve high-quality
|
| 64 |
+
image/video generation in very few steps. Supports T2I, I2I, and T2V in one sampler.
|
| 65 |
+
|
| 66 |
+
Key innovations:
|
| 67 |
+
- Policy-driven velocity field: predicts the whole path in one forward pass.
|
| 68 |
+
- Multi-stage sampling: coarse generation + optional refinement.
|
| 69 |
+
- High-order ODE solvers (RK4/RK2) for faster convergence.
|
| 70 |
+
- Hybrid flow/diffusion sampling for stable trajectories.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
num_train_timesteps (`int`, defaults to 1000):
|
| 74 |
+
Number of diffusion training steps.
|
| 75 |
+
num_inference_steps (`int`, defaults to 4):
|
| 76 |
+
Inference steps; supports few-step (4–8) generation.
|
| 77 |
+
sigma_min (`float`, defaults to 0.002):
|
| 78 |
+
Minimum noise level.
|
| 79 |
+
sigma_max (`float`, defaults to 80.0):
|
| 80 |
+
Maximum noise level.
|
| 81 |
+
sigma_data (`float`, defaults to 0.5):
|
| 82 |
+
Data std for preconditioning.
|
| 83 |
+
rho (`float`, defaults to 7.0):
|
| 84 |
+
Karras schedule parameter.
|
| 85 |
+
solver_order (`int`, defaults to 2):
|
| 86 |
+
Solver order (1: Euler, 2: RK2/Heun, 4: RK4).
|
| 87 |
+
use_flow_matching (`bool`, defaults to True):
|
| 88 |
+
Whether to use flow-matching mode.
|
| 89 |
+
use_multi_stage (`bool`, defaults to True):
|
| 90 |
+
Whether to use multi-stage sampling.
|
| 91 |
+
coarse_ratio (`float`, defaults to 0.7):
|
| 92 |
+
Fraction of steps allocated to coarse stage.
|
| 93 |
+
snr (`float`, defaults to 0.15):
|
| 94 |
+
SNR factor for correction step size.
|
| 95 |
+
prediction_type (`str`, defaults to "velocity"):
|
| 96 |
+
Prediction type ("velocity", "epsilon", "sample").
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
order = 2 # Default to 2nd-order solver
|
| 100 |
+
|
| 101 |
+
@register_to_config
|
| 102 |
+
def __init__(
|
| 103 |
+
self,
|
| 104 |
+
num_train_timesteps: int = 1000,
|
| 105 |
+
num_inference_steps: int = 4,
|
| 106 |
+
sigma_min: float = 0.002,
|
| 107 |
+
sigma_max: float = 80.0,
|
| 108 |
+
sigma_data: float = 0.5,
|
| 109 |
+
rho: float = 7.0,
|
| 110 |
+
solver_order: int = 2,
|
| 111 |
+
use_flow_matching: bool = True,
|
| 112 |
+
use_multi_stage: bool = True,
|
| 113 |
+
coarse_ratio: float = 0.7,
|
| 114 |
+
snr: float = 0.15,
|
| 115 |
+
prediction_type: str = "velocity",
|
| 116 |
+
):
|
| 117 |
+
# Initial noise sigma
|
| 118 |
+
self.init_noise_sigma = sigma_max
|
| 119 |
+
|
| 120 |
+
# Mutable state
|
| 121 |
+
self.timesteps = None
|
| 122 |
+
self.sigmas = None
|
| 123 |
+
self.discrete_sigmas = None
|
| 124 |
+
self.num_inference_steps = num_inference_steps
|
| 125 |
+
|
| 126 |
+
# Multi-stage state
|
| 127 |
+
self.current_stage = 0
|
| 128 |
+
self.coarse_steps = int(num_inference_steps * coarse_ratio)
|
| 129 |
+
self.refine_steps = num_inference_steps - self.coarse_steps
|
| 130 |
+
|
| 131 |
+
# Initialize timesteps and sigmas
|
| 132 |
+
self._init_timesteps_and_sigmas()
|
| 133 |
+
|
| 134 |
+
def _init_timesteps_and_sigmas(self):
|
| 135 |
+
"""Initialize timesteps and sigma values with Karras schedule."""
|
| 136 |
+
num_steps = self.config.num_inference_steps
|
| 137 |
+
sigma_min = self.config.sigma_min
|
| 138 |
+
sigma_max = self.config.sigma_max
|
| 139 |
+
rho = self.config.rho
|
| 140 |
+
|
| 141 |
+
# Karras sigma schedule: σ_i = (σ_max^(1/ρ) + i/(N-1) * (σ_min^(1/ρ) - σ_max^(1/ρ)))^ρ
|
| 142 |
+
ramp = torch.linspace(0, 1, num_steps + 1)
|
| 143 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
| 144 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
| 145 |
+
self.sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
| 146 |
+
|
| 147 |
+
# Append final sigma = 0
|
| 148 |
+
self.sigmas = torch.cat([self.sigmas, torch.zeros(1)])
|
| 149 |
+
|
| 150 |
+
# Timesteps from 1 to 0
|
| 151 |
+
self.timesteps = torch.linspace(1, 0, num_steps + 1)
|
| 152 |
+
|
| 153 |
+
# Discrete sigmas for compatibility
|
| 154 |
+
self.discrete_sigmas = self.sigmas[:-1]
|
| 155 |
+
|
| 156 |
+
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
| 157 |
+
"""
|
| 158 |
+
Precondition model input with sigma-dependent scaling.
|
| 159 |
+
|
| 160 |
+
Args:
|
| 161 |
+
sample (`torch.Tensor`): Input sample.
|
| 162 |
+
timestep (`int`, *optional*): Current timestep.
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
`torch.Tensor`: Scaled input sample.
|
| 166 |
+
"""
|
| 167 |
+
if timestep is None:
|
| 168 |
+
return sample
|
| 169 |
+
|
| 170 |
+
# Fetch current sigma
|
| 171 |
+
step_index = (self.timesteps == timestep).nonzero()
|
| 172 |
+
if len(step_index) == 0:
|
| 173 |
+
return sample
|
| 174 |
+
sigma = self.sigmas[step_index[0]].to(sample.device)
|
| 175 |
+
|
| 176 |
+
# Preconditioning scale: c_in = 1 / sqrt(σ² + σ_data²)
|
| 177 |
+
sigma_data = self.config.sigma_data
|
| 178 |
+
c_in = 1 / (sigma**2 + sigma_data**2).sqrt()
|
| 179 |
+
|
| 180 |
+
return sample * c_in
|
| 181 |
+
|
| 182 |
+
def set_timesteps(
|
| 183 |
+
self,
|
| 184 |
+
num_inference_steps: int,
|
| 185 |
+
device: Union[str, torch.device] = None,
|
| 186 |
+
use_karras_sigmas: bool = True,
|
| 187 |
+
):
|
| 188 |
+
"""
|
| 189 |
+
Set inference timesteps.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
num_inference_steps (`int`): Number of inference steps.
|
| 193 |
+
device (`str` or `torch.device`, *optional*): Target device.
|
| 194 |
+
use_karras_sigmas (`bool`): Whether to use Karras sigma schedule.
|
| 195 |
+
"""
|
| 196 |
+
self.num_inference_steps = num_inference_steps
|
| 197 |
+
self.coarse_steps = int(num_inference_steps * self.config.coarse_ratio)
|
| 198 |
+
self.refine_steps = num_inference_steps - self.coarse_steps
|
| 199 |
+
|
| 200 |
+
sigma_min = self.config.sigma_min
|
| 201 |
+
sigma_max = self.config.sigma_max
|
| 202 |
+
rho = self.config.rho
|
| 203 |
+
|
| 204 |
+
if use_karras_sigmas:
|
| 205 |
+
# Karras sigma schedule
|
| 206 |
+
ramp = torch.linspace(0, 1, num_inference_steps + 1)
|
| 207 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
| 208 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
| 209 |
+
self.sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
| 210 |
+
else:
|
| 211 |
+
# Linear sigma schedule
|
| 212 |
+
self.sigmas = torch.linspace(sigma_max, sigma_min, num_inference_steps + 1)
|
| 213 |
+
|
| 214 |
+
self.sigmas = torch.cat([self.sigmas, torch.zeros(1)])
|
| 215 |
+
self.timesteps = torch.linspace(1, 0, num_inference_steps + 1)
|
| 216 |
+
self.discrete_sigmas = self.sigmas[:-1]
|
| 217 |
+
|
| 218 |
+
if device is not None:
|
| 219 |
+
self.sigmas = self.sigmas.to(device)
|
| 220 |
+
self.timesteps = self.timesteps.to(device)
|
| 221 |
+
self.discrete_sigmas = self.discrete_sigmas.to(device)
|
| 222 |
+
|
| 223 |
+
def _get_velocity_from_prediction(
|
| 224 |
+
self,
|
| 225 |
+
model_output: torch.Tensor,
|
| 226 |
+
sample: torch.Tensor,
|
| 227 |
+
sigma: torch.Tensor,
|
| 228 |
+
) -> torch.Tensor:
|
| 229 |
+
"""
|
| 230 |
+
Convert model prediction to velocity field based on prediction type.
|
| 231 |
+
|
| 232 |
+
Args:
|
| 233 |
+
model_output: Model output.
|
| 234 |
+
sample: Current sample.
|
| 235 |
+
sigma: Current sigma.
|
| 236 |
+
|
| 237 |
+
Returns:
|
| 238 |
+
velocity: Velocity field (dx/dt).
|
| 239 |
+
"""
|
| 240 |
+
sigma_data = self.config.sigma_data
|
| 241 |
+
prediction_type = self.config.prediction_type
|
| 242 |
+
|
| 243 |
+
# Ensure sigma has proper shape
|
| 244 |
+
while len(sigma.shape) < len(sample.shape):
|
| 245 |
+
sigma = sigma.unsqueeze(-1)
|
| 246 |
+
|
| 247 |
+
if prediction_type == "velocity":
|
| 248 |
+
# Direct velocity prediction
|
| 249 |
+
velocity = model_output
|
| 250 |
+
elif prediction_type == "epsilon":
|
| 251 |
+
# From epsilon prediction: v = (x - σ*ε) / σ - x/σ = -ε
|
| 252 |
+
# Flow matching: dx/dt ≈ -ε * σ
|
| 253 |
+
velocity = -model_output * sigma
|
| 254 |
+
elif prediction_type == "sample":
|
| 255 |
+
# From sample prediction: v = (x_pred - x) / σ
|
| 256 |
+
velocity = (model_output - sample) / sigma.clamp(min=1e-8)
|
| 257 |
+
else:
|
| 258 |
+
raise ValueError(f"Unknown prediction_type: {prediction_type}")
|
| 259 |
+
|
| 260 |
+
return velocity
|
| 261 |
+
|
| 262 |
+
def step_euler(
|
| 263 |
+
self,
|
| 264 |
+
model_output: torch.Tensor,
|
| 265 |
+
timestep: int,
|
| 266 |
+
sample: torch.Tensor,
|
| 267 |
+
dt: float,
|
| 268 |
+
generator: Optional[torch.Generator] = None,
|
| 269 |
+
) -> torch.Tensor:
|
| 270 |
+
"""
|
| 271 |
+
Single Euler update (1st order).
|
| 272 |
+
|
| 273 |
+
Args:
|
| 274 |
+
model_output: Model output.
|
| 275 |
+
timestep: Current timestep index.
|
| 276 |
+
sample: Current sample.
|
| 277 |
+
dt: Step size.
|
| 278 |
+
generator: Random generator.
|
| 279 |
+
|
| 280 |
+
Returns:
|
| 281 |
+
Updated sample.
|
| 282 |
+
"""
|
| 283 |
+
sigma = self.sigmas[timestep].to(sample.device)
|
| 284 |
+
velocity = self._get_velocity_from_prediction(model_output, sample, sigma)
|
| 285 |
+
|
| 286 |
+
# Euler update: x_{t+dt} = x_t + v * dt
|
| 287 |
+
prev_sample = sample + velocity * dt
|
| 288 |
+
|
| 289 |
+
return prev_sample, velocity
|
| 290 |
+
|
| 291 |
+
def step_heun(
|
| 292 |
+
self,
|
| 293 |
+
model_output: torch.Tensor,
|
| 294 |
+
timestep: int,
|
| 295 |
+
sample: torch.Tensor,
|
| 296 |
+
dt: float,
|
| 297 |
+
model_fn=None,
|
| 298 |
+
generator: Optional[torch.Generator] = None,
|
| 299 |
+
) -> torch.Tensor:
|
| 300 |
+
"""
|
| 301 |
+
Heun's method (improved Euler, 2nd order).
|
| 302 |
+
|
| 303 |
+
Args:
|
| 304 |
+
model_output: Initial model output.
|
| 305 |
+
timestep: Current timestep index.
|
| 306 |
+
sample: Current sample.
|
| 307 |
+
dt: Step size.
|
| 308 |
+
model_fn: Model function for second evaluation.
|
| 309 |
+
generator: Random generator.
|
| 310 |
+
|
| 311 |
+
Returns:
|
| 312 |
+
Updated sample.
|
| 313 |
+
"""
|
| 314 |
+
sigma = self.sigmas[timestep].to(sample.device)
|
| 315 |
+
velocity_1 = self._get_velocity_from_prediction(model_output, sample, sigma)
|
| 316 |
+
|
| 317 |
+
# Predictor step (Euler)
|
| 318 |
+
sample_pred = sample + velocity_1 * dt
|
| 319 |
+
|
| 320 |
+
if model_fn is not None and timestep + 1 < len(self.sigmas) - 1:
|
| 321 |
+
# Corrector step
|
| 322 |
+
sigma_next = self.sigmas[timestep + 1].to(sample.device)
|
| 323 |
+
model_output_2 = model_fn(sample_pred, sigma_next)
|
| 324 |
+
velocity_2 = self._get_velocity_from_prediction(model_output_2, sample_pred, sigma_next)
|
| 325 |
+
|
| 326 |
+
# Heun update: x_{t+dt} = x_t + (v_1 + v_2) / 2 * dt
|
| 327 |
+
prev_sample = sample + (velocity_1 + velocity_2) / 2 * dt
|
| 328 |
+
velocity = (velocity_1 + velocity_2) / 2
|
| 329 |
+
else:
|
| 330 |
+
prev_sample = sample_pred
|
| 331 |
+
velocity = velocity_1
|
| 332 |
+
|
| 333 |
+
return prev_sample, velocity
|
| 334 |
+
|
| 335 |
+
def step_rk4(
|
| 336 |
+
self,
|
| 337 |
+
model_output: torch.Tensor,
|
| 338 |
+
timestep: int,
|
| 339 |
+
sample: torch.Tensor,
|
| 340 |
+
dt: float,
|
| 341 |
+
model_fn=None,
|
| 342 |
+
generator: Optional[torch.Generator] = None,
|
| 343 |
+
) -> torch.Tensor:
|
| 344 |
+
"""
|
| 345 |
+
Runge-Kutta 4th-order method.
|
| 346 |
+
|
| 347 |
+
Args:
|
| 348 |
+
model_output: Initial model output.
|
| 349 |
+
timestep: Current timestep index.
|
| 350 |
+
sample: Current sample.
|
| 351 |
+
dt: Step size.
|
| 352 |
+
model_fn: Model function for intermediate evaluations.
|
| 353 |
+
generator: Random generator.
|
| 354 |
+
|
| 355 |
+
Returns:
|
| 356 |
+
Updated sample.
|
| 357 |
+
"""
|
| 358 |
+
sigma = self.sigmas[timestep].to(sample.device)
|
| 359 |
+
|
| 360 |
+
# k1
|
| 361 |
+
k1 = self._get_velocity_from_prediction(model_output, sample, sigma)
|
| 362 |
+
|
| 363 |
+
if model_fn is None:
|
| 364 |
+
# Fallback to Euler if no model function
|
| 365 |
+
return sample + k1 * dt, k1
|
| 366 |
+
|
| 367 |
+
# Mid sigma values
|
| 368 |
+
sigma_mid = (self.sigmas[timestep] + self.sigmas[min(timestep + 1, len(self.sigmas) - 2)]) / 2
|
| 369 |
+
sigma_mid = sigma_mid.to(sample.device)
|
| 370 |
+
sigma_next = self.sigmas[min(timestep + 1, len(self.sigmas) - 2)].to(sample.device)
|
| 371 |
+
|
| 372 |
+
# k2
|
| 373 |
+
sample_2 = sample + k1 * (dt / 2)
|
| 374 |
+
model_output_2 = model_fn(sample_2, sigma_mid)
|
| 375 |
+
k2 = self._get_velocity_from_prediction(model_output_2, sample_2, sigma_mid)
|
| 376 |
+
|
| 377 |
+
# k3
|
| 378 |
+
sample_3 = sample + k2 * (dt / 2)
|
| 379 |
+
model_output_3 = model_fn(sample_3, sigma_mid)
|
| 380 |
+
k3 = self._get_velocity_from_prediction(model_output_3, sample_3, sigma_mid)
|
| 381 |
+
|
| 382 |
+
# k4
|
| 383 |
+
sample_4 = sample + k3 * dt
|
| 384 |
+
model_output_4 = model_fn(sample_4, sigma_next)
|
| 385 |
+
k4 = self._get_velocity_from_prediction(model_output_4, sample_4, sigma_next)
|
| 386 |
+
|
| 387 |
+
# RK4 update: x_{t+dt} = x_t + (k1 + 2*k2 + 2*k3 + k4) / 6 * dt
|
| 388 |
+
velocity = (k1 + 2 * k2 + 2 * k3 + k4) / 6
|
| 389 |
+
prev_sample = sample + velocity * dt
|
| 390 |
+
|
| 391 |
+
return prev_sample, velocity
|
| 392 |
+
|
| 393 |
+
def step(
|
| 394 |
+
self,
|
| 395 |
+
model_output: torch.Tensor,
|
| 396 |
+
timestep: int,
|
| 397 |
+
sample: torch.Tensor,
|
| 398 |
+
generator: Optional[torch.Generator] = None,
|
| 399 |
+
return_dict: bool = True,
|
| 400 |
+
model_fn=None,
|
| 401 |
+
) -> Union[OmniSchedulerOutput, Tuple]:
|
| 402 |
+
"""
|
| 403 |
+
Execute one sampling step, auto-selecting solver and strategy.
|
| 404 |
+
|
| 405 |
+
Args:
|
| 406 |
+
model_output (`torch.Tensor`): Model output.
|
| 407 |
+
timestep (`int`): Current timestep index.
|
| 408 |
+
sample (`torch.Tensor`): Current sample.
|
| 409 |
+
generator (`torch.Generator`, *optional*): Random generator.
|
| 410 |
+
return_dict (`bool`): Return dict format.
|
| 411 |
+
model_fn: Model function for higher-order solvers.
|
| 412 |
+
|
| 413 |
+
Returns:
|
| 414 |
+
`OmniSchedulerOutput` or `tuple`.
|
| 415 |
+
"""
|
| 416 |
+
if self.timesteps is None:
|
| 417 |
+
raise ValueError(
|
| 418 |
+
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
# Compute step size
|
| 422 |
+
if timestep + 1 < len(self.sigmas):
|
| 423 |
+
sigma_curr = self.sigmas[timestep]
|
| 424 |
+
sigma_next = self.sigmas[timestep + 1]
|
| 425 |
+
dt = sigma_next - sigma_curr
|
| 426 |
+
else:
|
| 427 |
+
dt = -self.sigmas[timestep]
|
| 428 |
+
|
| 429 |
+
# Determine current stage
|
| 430 |
+
if self.config.use_multi_stage:
|
| 431 |
+
if timestep < self.coarse_steps:
|
| 432 |
+
self.current_stage = 0 # coarse
|
| 433 |
+
else:
|
| 434 |
+
self.current_stage = 1 # refine
|
| 435 |
+
|
| 436 |
+
# Choose solver order based on stage
|
| 437 |
+
solver_order = self.config.solver_order
|
| 438 |
+
|
| 439 |
+
# Coarse stage may use lower order to speed up
|
| 440 |
+
if self.current_stage == 0 and self.config.use_multi_stage:
|
| 441 |
+
effective_order = min(solver_order, 2)
|
| 442 |
+
else:
|
| 443 |
+
effective_order = solver_order
|
| 444 |
+
|
| 445 |
+
if effective_order == 1:
|
| 446 |
+
prev_sample, velocity = self.step_euler(
|
| 447 |
+
model_output, timestep, sample, dt, generator
|
| 448 |
+
)
|
| 449 |
+
elif effective_order == 2:
|
| 450 |
+
prev_sample, velocity = self.step_heun(
|
| 451 |
+
model_output, timestep, sample, dt, model_fn, generator
|
| 452 |
+
)
|
| 453 |
+
elif effective_order >= 4:
|
| 454 |
+
prev_sample, velocity = self.step_rk4(
|
| 455 |
+
model_output, timestep, sample, dt, model_fn, generator
|
| 456 |
+
)
|
| 457 |
+
else:
|
| 458 |
+
prev_sample, velocity = self.step_euler(
|
| 459 |
+
model_output, timestep, sample, dt, generator
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
prev_sample_mean = prev_sample.clone()
|
| 463 |
+
|
| 464 |
+
if not return_dict:
|
| 465 |
+
return (prev_sample, prev_sample_mean, velocity, self.current_stage)
|
| 466 |
+
|
| 467 |
+
return OmniSchedulerOutput(
|
| 468 |
+
prev_sample=prev_sample,
|
| 469 |
+
prev_sample_mean=prev_sample_mean,
|
| 470 |
+
velocity=velocity,
|
| 471 |
+
stage=self.current_stage,
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
def apply_policy_trajectory(
|
| 475 |
+
self,
|
| 476 |
+
policy_velocities: Optional[torch.Tensor],
|
| 477 |
+
sample: torch.Tensor,
|
| 478 |
+
return_all: bool = False,
|
| 479 |
+
):
|
| 480 |
+
"""
|
| 481 |
+
Run inference directly using the velocity trajectory from a π-Flow policy network.
|
| 482 |
+
|
| 483 |
+
Args:
|
| 484 |
+
policy_velocities: Velocity field sequence of shape [S, *sample.shape].
|
| 485 |
+
sample: Initial noise sample.
|
| 486 |
+
return_all: Whether to return intermediate results for each step.
|
| 487 |
+
"""
|
| 488 |
+
if policy_velocities is None:
|
| 489 |
+
return (sample, []) if return_all else sample
|
| 490 |
+
|
| 491 |
+
steps = min(policy_velocities.shape[0], len(self.sigmas) - 1)
|
| 492 |
+
traj = []
|
| 493 |
+
curr = sample
|
| 494 |
+
for i in range(steps):
|
| 495 |
+
out = self.step(policy_velocities[i], i, curr, return_dict=True)
|
| 496 |
+
curr = out.prev_sample
|
| 497 |
+
if return_all:
|
| 498 |
+
traj.append(curr)
|
| 499 |
+
|
| 500 |
+
return (curr, traj) if return_all else curr
|
| 501 |
+
|
| 502 |
+
def step_correct(
|
| 503 |
+
self,
|
| 504 |
+
model_output: torch.Tensor,
|
| 505 |
+
sample: torch.Tensor,
|
| 506 |
+
generator: Optional[torch.Generator] = None,
|
| 507 |
+
return_dict: bool = True,
|
| 508 |
+
) -> Union[SchedulerOutput, Tuple]:
|
| 509 |
+
"""
|
| 510 |
+
Corrective step to improve sample quality.
|
| 511 |
+
|
| 512 |
+
Args:
|
| 513 |
+
model_output (`torch.Tensor`): Model output.
|
| 514 |
+
sample (`torch.Tensor`): Current sample.
|
| 515 |
+
generator (`torch.Generator`, *optional*): Random generator.
|
| 516 |
+
return_dict (`bool`): Return dict format.
|
| 517 |
+
|
| 518 |
+
Returns:
|
| 519 |
+
`SchedulerOutput` or `tuple`.
|
| 520 |
+
"""
|
| 521 |
+
if self.timesteps is None:
|
| 522 |
+
raise ValueError(
|
| 523 |
+
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
# Generate correction noise
|
| 527 |
+
noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator).to(sample.device)
|
| 528 |
+
|
| 529 |
+
# Compute step size
|
| 530 |
+
grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean()
|
| 531 |
+
noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
|
| 532 |
+
step_size = (self.config.snr * noise_norm / grad_norm.clamp(min=1e-8)) ** 2 * 2
|
| 533 |
+
step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
|
| 534 |
+
|
| 535 |
+
# Adjust shape
|
| 536 |
+
step_size = step_size.flatten()
|
| 537 |
+
while len(step_size.shape) < len(sample.shape):
|
| 538 |
+
step_size = step_size.unsqueeze(-1)
|
| 539 |
+
|
| 540 |
+
# Correction update
|
| 541 |
+
prev_sample_mean = sample + step_size * model_output
|
| 542 |
+
prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
|
| 543 |
+
|
| 544 |
+
if not return_dict:
|
| 545 |
+
return (prev_sample,)
|
| 546 |
+
|
| 547 |
+
return SchedulerOutput(prev_sample=prev_sample)
|
| 548 |
+
|
| 549 |
+
def add_noise(
|
| 550 |
+
self,
|
| 551 |
+
original_samples: torch.Tensor,
|
| 552 |
+
noise: torch.Tensor,
|
| 553 |
+
timesteps: torch.Tensor,
|
| 554 |
+
) -> torch.Tensor:
|
| 555 |
+
"""
|
| 556 |
+
Add noise to original samples.
|
| 557 |
+
|
| 558 |
+
Args:
|
| 559 |
+
original_samples: Original samples.
|
| 560 |
+
noise: Noise tensor.
|
| 561 |
+
timesteps: Timestep indices.
|
| 562 |
+
|
| 563 |
+
Returns:
|
| 564 |
+
Noised samples.
|
| 565 |
+
"""
|
| 566 |
+
timesteps = timesteps.to(original_samples.device)
|
| 567 |
+
|
| 568 |
+
# Get corresponding sigma
|
| 569 |
+
sigmas = self.discrete_sigmas.to(original_samples.device)[timesteps]
|
| 570 |
+
|
| 571 |
+
# Adjust shape
|
| 572 |
+
while len(sigmas.shape) < len(original_samples.shape):
|
| 573 |
+
sigmas = sigmas.unsqueeze(-1)
|
| 574 |
+
|
| 575 |
+
# Add noise
|
| 576 |
+
if noise is not None:
|
| 577 |
+
noisy_samples = original_samples + noise * sigmas
|
| 578 |
+
else:
|
| 579 |
+
noisy_samples = original_samples + torch.randn_like(original_samples) * sigmas
|
| 580 |
+
|
| 581 |
+
return noisy_samples
|
| 582 |
+
|
| 583 |
+
def get_flow_velocity(
|
| 584 |
+
self,
|
| 585 |
+
x_0: torch.Tensor,
|
| 586 |
+
x_1: torch.Tensor,
|
| 587 |
+
t: torch.Tensor,
|
| 588 |
+
) -> torch.Tensor:
|
| 589 |
+
"""
|
| 590 |
+
Compute target velocity field for flow matching.
|
| 591 |
+
|
| 592 |
+
Used to train the policy network.
|
| 593 |
+
|
| 594 |
+
Args:
|
| 595 |
+
x_0: Start sample (noise).
|
| 596 |
+
x_1: Target sample (data).
|
| 597 |
+
t: Time point [0, 1].
|
| 598 |
+
|
| 599 |
+
Returns:
|
| 600 |
+
Target velocity field.
|
| 601 |
+
"""
|
| 602 |
+
# Linear interpolation path: x_t = (1-t) * x_0 + t * x_1
|
| 603 |
+
# Velocity field: v = dx/dt = x_1 - x_0
|
| 604 |
+
while len(t.shape) < len(x_0.shape):
|
| 605 |
+
t = t.unsqueeze(-1)
|
| 606 |
+
|
| 607 |
+
velocity = x_1 - x_0
|
| 608 |
+
return velocity
|
| 609 |
+
|
| 610 |
+
def get_interpolated_sample(
|
| 611 |
+
self,
|
| 612 |
+
x_0: torch.Tensor,
|
| 613 |
+
x_1: torch.Tensor,
|
| 614 |
+
t: torch.Tensor,
|
| 615 |
+
) -> torch.Tensor:
|
| 616 |
+
"""
|
| 617 |
+
Get interpolated sample on the flow-matching path.
|
| 618 |
+
|
| 619 |
+
Args:
|
| 620 |
+
x_0: Start sample (noise).
|
| 621 |
+
x_1: Target sample (data).
|
| 622 |
+
t: Time point [0, 1].
|
| 623 |
+
|
| 624 |
+
Returns:
|
| 625 |
+
Interpolated sample x_t.
|
| 626 |
+
"""
|
| 627 |
+
while len(t.shape) < len(x_0.shape):
|
| 628 |
+
t = t.unsqueeze(-1)
|
| 629 |
+
|
| 630 |
+
x_t = (1 - t) * x_0 + t * x_1
|
| 631 |
+
return x_t
|
| 632 |
+
|
| 633 |
+
def __len__(self):
|
| 634 |
+
return self.config.num_train_timesteps
|