from transformers import AutoModelForCausalLM, AutoTokenizer import torch MODEL = "siyagajbhe/legal-llama-rag" # change later to your fine-tuned model tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForCausalLM.from_pretrained( MODEL, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto" ) def answer_query(query): prompt = f"Question: {query}\nAnswer with citations from legal sources:\n" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.3) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return { "input": query, "output": answer, "citations": ["CourtListener", "Caselaw Access Project"] }