Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,49 +1,40 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import io
|
| 3 |
-
import cv2
|
| 4 |
import numpy as np
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import matplotlib.animation as animation
|
| 7 |
from PIL import Image
|
|
|
|
|
|
|
| 8 |
from math import tau
|
| 9 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 10 |
import gradio as gr
|
|
|
|
| 11 |
|
| 12 |
def fourier_transform_drawing(input_image, frames, coefficients, img_size, blur_kernel_size, desired_range, num_points, theta_points):
|
| 13 |
# Convert PIL to OpenCV image
|
| 14 |
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
| 15 |
-
|
| 16 |
-
# Resize the image for faster processing
|
| 17 |
img = cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_AREA)
|
| 18 |
-
|
| 19 |
-
# Image processing
|
| 20 |
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 21 |
blurred = cv2.GaussianBlur(imgray, (blur_kernel_size, blur_kernel_size), 0)
|
| 22 |
_, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
|
| 23 |
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 24 |
|
| 25 |
# find the contour with the largest area
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
verts = [tuple(coord) for coord in combined_contour.squeeze()]
|
| 38 |
xs, ys = np.asarray(list(zip(*verts)))
|
| 39 |
-
|
| 40 |
-
# Scale the coordinates
|
| 41 |
x_range, y_range = np.max(xs) - np.min(xs), np.max(ys) - np.min(ys)
|
| 42 |
scale_x, scale_y = desired_range / x_range, desired_range / y_range
|
| 43 |
xs = (xs - np.mean(xs)) * scale_x
|
| 44 |
ys = (-ys + np.mean(ys)) * scale_y
|
| 45 |
|
| 46 |
-
# Compute Fourier coefficients
|
| 47 |
t_list = np.linspace(0, tau, len(xs))
|
| 48 |
t_values = np.linspace(0, tau, num_points)
|
| 49 |
f_precomputed = np.interp(t_values, t_list, xs + 1j * ys)
|
|
@@ -55,11 +46,9 @@ def fourier_transform_drawing(input_image, frames, coefficients, img_size, blur_
|
|
| 55 |
N = coefficients
|
| 56 |
indices = [0] + [j for i in range(1, N + 1) for j in (i, -i)]
|
| 57 |
|
| 58 |
-
# Parallel computation of coefficients
|
| 59 |
with ThreadPoolExecutor(max_workers=8) as executor:
|
| 60 |
coefs = list(executor.map(lambda n: (compute_cn(f_precomputed, n, t_values), n), indices))
|
| 61 |
|
| 62 |
-
# Animation setup
|
| 63 |
fig, ax = plt.subplots()
|
| 64 |
circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N + 1)]
|
| 65 |
circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N + 1)]
|
|
@@ -75,26 +64,35 @@ def fourier_transform_drawing(input_image, frames, coefficients, img_size, blur_
|
|
| 75 |
theta = np.linspace(0, tau, theta_points)
|
| 76 |
coefs_static = [(np.linalg.norm(c), fr) for c, fr in coefs]
|
| 77 |
|
| 78 |
-
# Animation function
|
| 79 |
def animate(i, coefs, time):
|
| 80 |
center = (0, 0)
|
| 81 |
for idx, (r, fr) in enumerate(coefs_static):
|
| 82 |
c_dynamic = coefs[idx][0] * np.exp(1j * (fr * tau * time[i]))
|
| 83 |
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta)
|
| 84 |
circle_lines[idx].set_data([center[0], center[0] + np.real(c_dynamic)], [center[1], center[1] + np.imag(c_dynamic)])
|
| 85 |
-
circles[idx].set_data(x, y)
|
| 86 |
center = (center[0] + np.real(c_dynamic), center[1] + np.imag(c_dynamic))
|
| 87 |
-
|
| 88 |
draw_x.append(center[0])
|
| 89 |
draw_y.append(center[1])
|
| 90 |
drawing.set_data(draw_x[:i+1], draw_y[:i+1])
|
| 91 |
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, np.linspace(0, 1, num=frames)))
|
| 94 |
-
|
| 95 |
-
anim.save(
|
| 96 |
-
|
| 97 |
-
|
| 98 |
|
| 99 |
# Gradio interface setup
|
| 100 |
interface = gr.Interface(
|
|
@@ -109,10 +107,9 @@ interface = gr.Interface(
|
|
| 109 |
gr.Number(value=1000, label="Number of Points for Integration", precision=0),
|
| 110 |
gr.Slider(minimum=50, maximum=500, value=80, label="Theta Points for Animation")
|
| 111 |
],
|
| 112 |
-
outputs=
|
| 113 |
title="Fourier Transform Drawing",
|
| 114 |
description="Upload an image and generate a Fourier Transform drawing animation.",
|
| 115 |
-
examples=[["Fourier2.jpg", 100, 200, 224, 5, 400, 1000, 80], ["Luffy.png", 100, 100, 224, 5, 400, 1000, 80]]
|
| 116 |
)
|
| 117 |
|
| 118 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import matplotlib.animation as animation
|
| 4 |
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
+
import cv2
|
| 7 |
from math import tau
|
|
|
|
| 8 |
import gradio as gr
|
| 9 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 10 |
|
| 11 |
def fourier_transform_drawing(input_image, frames, coefficients, img_size, blur_kernel_size, desired_range, num_points, theta_points):
|
| 12 |
# Convert PIL to OpenCV image
|
| 13 |
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
|
| 14 |
img = cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_AREA)
|
|
|
|
|
|
|
| 15 |
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 16 |
blurred = cv2.GaussianBlur(imgray, (blur_kernel_size, blur_kernel_size), 0)
|
| 17 |
_, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
|
| 18 |
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 19 |
|
| 20 |
# find the contour with the largest area
|
| 21 |
+
largest_contour_idx = np.argmax([cv2.contourArea(c) for c in contours])
|
| 22 |
+
largest_contour = contours[largest_contour_idx]
|
| 23 |
|
| 24 |
+
# def combine_all_contours(contours):
|
| 25 |
+
# combined_contour = np.array([], dtype=np.int32).reshape(0, 1, 2)
|
| 26 |
+
# for contour in contours:
|
| 27 |
+
# combined_contour = np.vstack((combined_contour, contour))
|
| 28 |
+
# return combined_contour
|
| 29 |
+
|
| 30 |
+
# largest_contour = combine_all_contours(contours)
|
| 31 |
+
verts = [tuple(coord) for coord in largest_contour.squeeze()]
|
|
|
|
| 32 |
xs, ys = np.asarray(list(zip(*verts)))
|
|
|
|
|
|
|
| 33 |
x_range, y_range = np.max(xs) - np.min(xs), np.max(ys) - np.min(ys)
|
| 34 |
scale_x, scale_y = desired_range / x_range, desired_range / y_range
|
| 35 |
xs = (xs - np.mean(xs)) * scale_x
|
| 36 |
ys = (-ys + np.mean(ys)) * scale_y
|
| 37 |
|
|
|
|
| 38 |
t_list = np.linspace(0, tau, len(xs))
|
| 39 |
t_values = np.linspace(0, tau, num_points)
|
| 40 |
f_precomputed = np.interp(t_values, t_list, xs + 1j * ys)
|
|
|
|
| 46 |
N = coefficients
|
| 47 |
indices = [0] + [j for i in range(1, N + 1) for j in (i, -i)]
|
| 48 |
|
|
|
|
| 49 |
with ThreadPoolExecutor(max_workers=8) as executor:
|
| 50 |
coefs = list(executor.map(lambda n: (compute_cn(f_precomputed, n, t_values), n), indices))
|
| 51 |
|
|
|
|
| 52 |
fig, ax = plt.subplots()
|
| 53 |
circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N + 1)]
|
| 54 |
circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N + 1)]
|
|
|
|
| 64 |
theta = np.linspace(0, tau, theta_points)
|
| 65 |
coefs_static = [(np.linalg.norm(c), fr) for c, fr in coefs]
|
| 66 |
|
|
|
|
| 67 |
def animate(i, coefs, time):
|
| 68 |
center = (0, 0)
|
| 69 |
for idx, (r, fr) in enumerate(coefs_static):
|
| 70 |
c_dynamic = coefs[idx][0] * np.exp(1j * (fr * tau * time[i]))
|
| 71 |
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta)
|
| 72 |
circle_lines[idx].set_data([center[0], center[0] + np.real(c_dynamic)], [center[1], center[1] + np.imag(c_dynamic)])
|
| 73 |
+
circles[idx].set_data(x, y)
|
| 74 |
center = (center[0] + np.real(c_dynamic), center[1] + np.imag(c_dynamic))
|
| 75 |
+
|
| 76 |
draw_x.append(center[0])
|
| 77 |
draw_y.append(center[1])
|
| 78 |
drawing.set_data(draw_x[:i+1], draw_y[:i+1])
|
| 79 |
|
| 80 |
+
# Capture and yield the current plot as an image
|
| 81 |
+
buf = io.BytesIO()
|
| 82 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
| 83 |
+
buf.seek(0)
|
| 84 |
+
yield np.array(Image.open(buf))
|
| 85 |
+
|
| 86 |
+
# Generate and yield images
|
| 87 |
+
for frame in range(frames):
|
| 88 |
+
yield from animate(frame, coefs, np.linspace(0, 1, num=frames))
|
| 89 |
+
|
| 90 |
+
# Generate final animation
|
| 91 |
anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, np.linspace(0, 1, num=frames)))
|
| 92 |
+
buf = io.BytesIO()
|
| 93 |
+
anim.save(buf, format='gif', fps=15)
|
| 94 |
+
buf.seek(0)
|
| 95 |
+
yield buf
|
| 96 |
|
| 97 |
# Gradio interface setup
|
| 98 |
interface = gr.Interface(
|
|
|
|
| 107 |
gr.Number(value=1000, label="Number of Points for Integration", precision=0),
|
| 108 |
gr.Slider(minimum=50, maximum=500, value=80, label="Theta Points for Animation")
|
| 109 |
],
|
| 110 |
+
outputs=["image", "file"],
|
| 111 |
title="Fourier Transform Drawing",
|
| 112 |
description="Upload an image and generate a Fourier Transform drawing animation.",
|
|
|
|
| 113 |
)
|
| 114 |
|
| 115 |
if __name__ == "__main__":
|