Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,6 +11,9 @@ from PIL import Image
|
|
| 11 |
|
| 12 |
|
| 13 |
def fourier_transform_drawing(input_image, frames, coefficients, img_size):
|
|
|
|
|
|
|
|
|
|
| 14 |
# Convert PIL to OpenCV image(array)
|
| 15 |
input_image = np.array(input_image)
|
| 16 |
img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
|
|
@@ -28,10 +31,11 @@ def fourier_transform_drawing(input_image, frames, coefficients, img_size):
|
|
| 28 |
# find the contour with the largest area
|
| 29 |
largest_contour_idx = np.argmax([cv2.contourArea(c) for c in contours])
|
| 30 |
largest_contour = contours[largest_contour_idx]
|
| 31 |
-
|
| 32 |
verts = [tuple(coord) for coord in contours[largest_contour_idx].squeeze()]
|
| 33 |
|
| 34 |
xs, ys = zip(*verts)
|
|
|
|
| 35 |
|
| 36 |
# calculate the range of xs and ys
|
| 37 |
x_range = np.max(xs) - np.min(xs)
|
|
@@ -39,46 +43,30 @@ def fourier_transform_drawing(input_image, frames, coefficients, img_size):
|
|
| 39 |
|
| 40 |
# determine the scale factors
|
| 41 |
desired_range = 400
|
| 42 |
-
|
| 43 |
-
|
| 44 |
|
| 45 |
# apply scaling
|
| 46 |
# ys needs to be flipped vertically
|
| 47 |
-
xs = (
|
| 48 |
-
ys = (-
|
| 49 |
-
|
| 50 |
-
t_list = np.linspace(0, tau, len(xs))
|
| 51 |
|
| 52 |
# compute the Fourier coefficients
|
| 53 |
-
|
| 54 |
-
|
|
|
|
| 55 |
|
| 56 |
-
def compute_cn(
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
coef = np.trapz(integrand, t_values) / tau
|
| 64 |
return coef
|
| 65 |
|
| 66 |
-
|
| 67 |
-
# # compute the Fourier coefficients
|
| 68 |
-
# def f(t, t_list, xs, ys):
|
| 69 |
-
# return np.interp(t, t_list, xs + 1j*ys)
|
| 70 |
-
|
| 71 |
-
# def compute_cn(f, n):
|
| 72 |
-
# coef = 1/tau*quad_vec(
|
| 73 |
-
# lambda t: f(t, t_list, xs, ys)*np.exp(-n*t*1j),
|
| 74 |
-
# 0,
|
| 75 |
-
# tau,
|
| 76 |
-
# limit=100,
|
| 77 |
-
# full_output=False)[0]
|
| 78 |
-
# return coef
|
| 79 |
-
|
| 80 |
N = coefficients
|
| 81 |
-
coefs = [(compute_cn(
|
| 82 |
|
| 83 |
# animate the drawings
|
| 84 |
fig, ax = plt.subplots()
|
|
@@ -96,12 +84,11 @@ def fourier_transform_drawing(input_image, frames, coefficients, img_size):
|
|
| 96 |
|
| 97 |
def animate(i, coefs, time):
|
| 98 |
t = time[i]
|
| 99 |
-
coefs = [(c * np.exp(1j*(fr * tau * t)), fr) for c, fr in coefs]
|
| 100 |
center = (0, 0)
|
| 101 |
-
|
| 102 |
-
for c,
|
|
|
|
| 103 |
r = np.linalg.norm(c)
|
| 104 |
-
theta = np.linspace(0, tau, 80)
|
| 105 |
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta)
|
| 106 |
circle_lines[_].set_data([center[0], center[0 ]+ np.real(c)], [center[1], center[1] + np.imag(c)])
|
| 107 |
circles[_].set_data(x, y)
|
|
@@ -121,7 +108,6 @@ def fourier_transform_drawing(input_image, frames, coefficients, img_size):
|
|
| 121 |
anim.save(output_animation, fps=15)
|
| 122 |
plt.close(fig)
|
| 123 |
|
| 124 |
-
# return the path to the MP4 file
|
| 125 |
return output_animation
|
| 126 |
|
| 127 |
# Gradio interface
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def fourier_transform_drawing(input_image, frames, coefficients, img_size):
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
# Convert PIL to OpenCV image(array)
|
| 18 |
input_image = np.array(input_image)
|
| 19 |
img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
|
|
|
|
| 31 |
# find the contour with the largest area
|
| 32 |
largest_contour_idx = np.argmax([cv2.contourArea(c) for c in contours])
|
| 33 |
largest_contour = contours[largest_contour_idx]
|
| 34 |
+
|
| 35 |
verts = [tuple(coord) for coord in contours[largest_contour_idx].squeeze()]
|
| 36 |
|
| 37 |
xs, ys = zip(*verts)
|
| 38 |
+
xs, ys = np.asarray(xs), np.asarray(ys)
|
| 39 |
|
| 40 |
# calculate the range of xs and ys
|
| 41 |
x_range = np.max(xs) - np.min(xs)
|
|
|
|
| 43 |
|
| 44 |
# determine the scale factors
|
| 45 |
desired_range = 400
|
| 46 |
+
scale_x = desired_range / x_range
|
| 47 |
+
scale_y = desired_range / y_range
|
| 48 |
|
| 49 |
# apply scaling
|
| 50 |
# ys needs to be flipped vertically
|
| 51 |
+
xs = (xs - np.mean(xs)) * scale_x
|
| 52 |
+
ys = (-ys + np.mean(ys)) * scale_y
|
|
|
|
|
|
|
| 53 |
|
| 54 |
# compute the Fourier coefficients
|
| 55 |
+
num_points = 1000 # how many points to use for numerical integration
|
| 56 |
+
t_values = np.linspace(0, tau, num_points)
|
| 57 |
+
t_list = np.linspace(0, tau, len(xs))
|
| 58 |
|
| 59 |
+
def compute_cn(n, t_list, xs, ys):
|
| 60 |
+
"""
|
| 61 |
+
Integrate the contour along axis (-1) using the composite trapezoidal rule.
|
| 62 |
+
https://numpy.org/doc/stable/reference/generated/numpy.trapz.html#r7aa6c77779c0-2
|
| 63 |
+
"""
|
| 64 |
+
f_exp = np.interp(t, t_list, xs + 1j * ys) * np.exp(-n * t_values * 1j)
|
| 65 |
+
coef = np.trapz(f_exp, t_values) / tau
|
|
|
|
| 66 |
return coef
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
N = coefficients
|
| 69 |
+
coefs = [(compute_cn(0, t_list, xs, ys), 0)] + [(compute_cn(j, t_list, xs, ys), j) for i in range(1, N+1) for j in (i, -i)]
|
| 70 |
|
| 71 |
# animate the drawings
|
| 72 |
fig, ax = plt.subplots()
|
|
|
|
| 84 |
|
| 85 |
def animate(i, coefs, time):
|
| 86 |
t = time[i]
|
|
|
|
| 87 |
center = (0, 0)
|
| 88 |
+
theta = np.linspace(0, tau, 80)
|
| 89 |
+
for c, fr in coefs:
|
| 90 |
+
c = c * np.exp(1j*(fr * tau * t)
|
| 91 |
r = np.linalg.norm(c)
|
|
|
|
| 92 |
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta)
|
| 93 |
circle_lines[_].set_data([center[0], center[0 ]+ np.real(c)], [center[1], center[1] + np.imag(c)])
|
| 94 |
circles[_].set_data(x, y)
|
|
|
|
| 108 |
anim.save(output_animation, fps=15)
|
| 109 |
plt.close(fig)
|
| 110 |
|
|
|
|
| 111 |
return output_animation
|
| 112 |
|
| 113 |
# Gradio interface
|