Spaces:
Running
on
Zero
Running
on
Zero
commit
Browse files- LICENSE-CODE +21 -0
- app.py +115 -4
- extra/compute_metrics.py +136 -0
- extra/download_dataset.py +0 -0
- setup/checkpoints_to_hf.py +12 -0
- setup/download_checkpoints.py +35 -0
- setup/download_svd_weights.py +13 -0
- setup/environment.yaml +225 -0
- simplified_inference.py +190 -0
- simplified_pipeline.py +807 -0
- simplified_validation.py +108 -0
- splits/test_scenes.pkl +3 -0
- splits/train_scenes.pkl +3 -0
- training/configs/accelerator_config.yaml +25 -0
- training/configs/focal_stacks_test.yaml +47 -0
- training/configs/focal_stacks_train.yaml +47 -0
- training/configs/outside_photos.yaml +46 -0
- training/svd_pipeline.py +828 -0
- training/svd_runner.py +683 -0
- training/utils.py +509 -0
- training/validation.py +145 -0
LICENSE-CODE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2023 Stability AI
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
app.py
CHANGED
|
@@ -1,7 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import uuid
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import argparse
|
| 5 |
+
|
| 6 |
import gradio as gr
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from diffusers.utils import export_to_video
|
| 9 |
+
|
| 10 |
+
from inference import load_model, inference_on_image
|
| 11 |
+
|
| 12 |
+
# -----------------------
|
| 13 |
+
# 1. Load model
|
| 14 |
+
# -----------------------
|
| 15 |
+
args = argparse.Namespace()
|
| 16 |
+
args.blur2vid_hf_repo_path = "tedlasai/blur2vid"
|
| 17 |
+
args.pretrained_model_path = "THUDM/CogVideoX-2b"
|
| 18 |
+
args.model_config_path = "training/configs/outsidephotos.yaml"
|
| 19 |
+
args.video_width = 1280
|
| 20 |
+
args.video_height = 720
|
| 21 |
+
args.seed = None
|
| 22 |
+
|
| 23 |
+
pipe, model_config = load_model(args)
|
| 24 |
+
|
| 25 |
+
OUTPUT_DIR = Path("/tmp/generated_videos")
|
| 26 |
+
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def generate_video_from_image(image: Image.Image, interval_key: str, num_inference_steps: int) -> str:
|
| 30 |
+
"""
|
| 31 |
+
Wrapper for Gradio. Takes an image and returns a video path.
|
| 32 |
+
"""
|
| 33 |
+
if image is None:
|
| 34 |
+
raise gr.Error("Please upload an image first.")
|
| 35 |
+
|
| 36 |
+
print("Generating video")
|
| 37 |
+
import torch
|
| 38 |
+
print("CUDA:", torch.cuda.is_available())
|
| 39 |
+
print("Device:", torch.cuda.get_device_name(0))
|
| 40 |
+
print("bf16 supported:", torch.cuda.is_bf16_supported())
|
| 41 |
+
|
| 42 |
+
args.num_inference_steps = num_inference_steps
|
| 43 |
+
|
| 44 |
+
video_id = uuid.uuid4().hex
|
| 45 |
+
output_path = OUTPUT_DIR / f"{video_id}.mp4"
|
| 46 |
+
|
| 47 |
+
args.device = "cuda"
|
| 48 |
+
|
| 49 |
+
pipe.to(args.device)
|
| 50 |
+
processed_image, video = inference_on_image(pipe, image, interval_key, model_config, args)
|
| 51 |
+
export_to_video(video, output_path, fps=20)
|
| 52 |
+
|
| 53 |
+
if not os.path.exists(output_path):
|
| 54 |
+
raise gr.Error("Video generation failed: output file not found.")
|
| 55 |
+
|
| 56 |
+
return str(output_path)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
| 60 |
+
gr.Markdown(
|
| 61 |
+
"""
|
| 62 |
+
# 🖼️ ➜ 🎬 Recover Motion from a Blurry Image
|
| 63 |
+
|
| 64 |
+
This demo accompanies the paper **“Generating the Past, Present, and Future from a Motion-Blurred Image”**
|
| 65 |
+
by Tedla *et al.*, ACM Transactions on Graphics (SIGGRAPH Asia 2025).
|
| 66 |
+
|
| 67 |
+
- 🌐 **Project page:** <https://blur2vid.github.io/>
|
| 68 |
+
- 💻 **Code:** <https://github.com/tedlasai/blur2vid/>
|
| 69 |
+
|
| 70 |
+
Upload a blurry image and the model will generate a short video showing the recovered motion based on your selection.
|
| 71 |
+
Note: The image will be resized to 1280×720. We recommend uploading landscape-oriented images.
|
| 72 |
+
"""
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
with gr.Row():
|
| 76 |
+
with gr.Column():
|
| 77 |
+
image_in = gr.Image(
|
| 78 |
+
type="pil",
|
| 79 |
+
label="Input image",
|
| 80 |
+
interactive=True,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
with gr.Row():
|
| 84 |
+
tense_choice = gr.Radio(
|
| 85 |
+
label="Select the interval to be generated:",
|
| 86 |
+
choices=["present", "past, present and future"],
|
| 87 |
+
value="past, present and future",
|
| 88 |
+
interactive=True,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
num_inference_steps = gr.Slider(
|
| 92 |
+
label="Number of inference steps",
|
| 93 |
+
minimum=4,
|
| 94 |
+
maximum=50,
|
| 95 |
+
step=1,
|
| 96 |
+
value=20,
|
| 97 |
+
info="More steps = better quality but slower",
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
generate_btn = gr.Button("Generate video", variant="primary")
|
| 101 |
+
|
| 102 |
+
with gr.Column():
|
| 103 |
+
video_out = gr.Video(
|
| 104 |
+
label="Generated video",
|
| 105 |
+
format="mp4",
|
| 106 |
+
autoplay=True,
|
| 107 |
+
loop=True,
|
| 108 |
+
)
|
| 109 |
|
| 110 |
+
generate_btn.click(
|
| 111 |
+
fn=generate_video_from_image,
|
| 112 |
+
inputs=[image_in, tense_choice, num_inference_steps],
|
| 113 |
+
outputs=video_out,
|
| 114 |
+
api_name="predict",
|
| 115 |
+
)
|
| 116 |
|
| 117 |
+
if __name__ == "__main__":
|
| 118 |
+
demo.launch()
|
extra/compute_metrics.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torchmetrics
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
import csv
|
| 7 |
+
import sys
|
| 8 |
+
|
| 9 |
+
num_positions = 9
|
| 10 |
+
|
| 11 |
+
output_dir_path = "/datasets/sai/focal-burst-learning/metrics_output"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
gt = "gt"
|
| 16 |
+
model = sys.argv[1]
|
| 17 |
+
|
| 18 |
+
gt_path = os.path.join(output_dir_path, gt)
|
| 19 |
+
model_path = os.path.join(output_dir_path, model)
|
| 20 |
+
|
| 21 |
+
device = sys.argv[2]
|
| 22 |
+
|
| 23 |
+
metrics_grid = []
|
| 24 |
+
|
| 25 |
+
for i in range(num_positions):
|
| 26 |
+
row = []
|
| 27 |
+
for j in range(num_positions):
|
| 28 |
+
metrics = {
|
| 29 |
+
"psnr": torchmetrics.image.PeakSignalNoiseRatio(data_range=1.0).to(device),
|
| 30 |
+
"ssim": torchmetrics.image.StructuralSimilarityIndexMeasure().to(device),
|
| 31 |
+
"lpips": torchmetrics.image.lpip.LearnedPerceptualImagePatchSimilarity(net_type='vgg', normalize=True).to(device),
|
| 32 |
+
"fid": torchmetrics.image.fid.FrechetInceptionDistance(normalize=True).to(device),
|
| 33 |
+
"vif": torchmetrics.image.VisualInformationFidelity().to(device),
|
| 34 |
+
}
|
| 35 |
+
row.append(metrics)
|
| 36 |
+
metrics_grid.append(row)
|
| 37 |
+
print("Created metrics for position", i)
|
| 38 |
+
|
| 39 |
+
#lopp through each directory in gt_path
|
| 40 |
+
#get all directories in gt_path
|
| 41 |
+
position_dirs = os.listdir(gt_path)
|
| 42 |
+
position_dirs = sorted([dir for dir in position_dirs if os.path.isdir(os.path.join(gt_path, dir))]) [0:num_positions]
|
| 43 |
+
|
| 44 |
+
for gt_dir in position_dirs:
|
| 45 |
+
position_number = int(gt_dir.split("_")[1])
|
| 46 |
+
#get pngs inside that directory
|
| 47 |
+
gt_pngs = sorted(os.listdir(os.path.join(gt_path, gt_dir, "images")))
|
| 48 |
+
#Confirm that number of pngs == 164*9
|
| 49 |
+
assert len(gt_pngs) == 164*9
|
| 50 |
+
#loop through the 164 imgs
|
| 51 |
+
for i in range(164):
|
| 52 |
+
#get the 9 frames
|
| 53 |
+
gt_frames_names = gt_pngs[i*9:(i+1)*9]
|
| 54 |
+
#load the 9 frames
|
| 55 |
+
gt_frames = [Image.open(os.path.join(gt_path, gt_dir, "images", frame)) for frame in gt_frames_names]
|
| 56 |
+
#make into numpy arraymo
|
| 57 |
+
gt_frames = [torch.tensor(np.array(frame)/255).to(torch.float32).to(device).permute(2,0,1).unsqueeze(0) for frame in gt_frames]
|
| 58 |
+
|
| 59 |
+
#load model_frames which is almost smae path but in model_path
|
| 60 |
+
model_frames = [Image.open(os.path.join(model_path, gt_dir, "images", frame)) for frame in gt_frames_names]
|
| 61 |
+
#make into numpy array
|
| 62 |
+
model_frames = [torch.tensor(np.array(frame)/255).to(torch.float32).to(device).permute(2,0,1).unsqueeze(0) for frame in model_frames]
|
| 63 |
+
|
| 64 |
+
#loop through the 9 frames
|
| 65 |
+
for j in range(num_positions):
|
| 66 |
+
#compute metrics
|
| 67 |
+
for key, metric in metrics_grid[position_number][j].items():
|
| 68 |
+
#if frames have a 4th channel discard it
|
| 69 |
+
if gt_frames[j].shape[1] == 4:
|
| 70 |
+
gt_frames[j] = gt_frames[j][:,:3,:,:]
|
| 71 |
+
if model_frames[j].shape[1] == 4:
|
| 72 |
+
model_frames[j] = model_frames[j][:,:3,:,:]
|
| 73 |
+
if key == "fid":
|
| 74 |
+
metric.update(model_frames[j], real=False)
|
| 75 |
+
metric.update(gt_frames[j], real=True)
|
| 76 |
+
else:
|
| 77 |
+
metric(gt_frames[j], model_frames[j])
|
| 78 |
+
|
| 79 |
+
print("Computed metrics for position", position_number, "frame", i)
|
| 80 |
+
|
| 81 |
+
#write the metrics to a csv (each metric as a csv)
|
| 82 |
+
|
| 83 |
+
def write_metrics_to_csv(metrics_grid, metric_names, formatting_options=None, output_dir="metrics_output"):
|
| 84 |
+
"""
|
| 85 |
+
Writes each metric in the metrics_grid to a separate CSV file.
|
| 86 |
+
|
| 87 |
+
Args:
|
| 88 |
+
metrics_grid (list): A 9x9 list of dictionaries containing metrics.
|
| 89 |
+
metric_names (list): List of metric names (e.g., ["psnr", "lpips", "fid"]).
|
| 90 |
+
output_dir (str): Directory where the CSV files will be saved.
|
| 91 |
+
"""
|
| 92 |
+
import os
|
| 93 |
+
os.makedirs(output_dir, exist_ok=True) # Create output directory if it doesn't exist
|
| 94 |
+
|
| 95 |
+
positions = list(range(1, num_positions+1))
|
| 96 |
+
|
| 97 |
+
for metric_name in metric_names:
|
| 98 |
+
output_file = os.path.join(output_dir, f"{metric_name}.csv")
|
| 99 |
+
|
| 100 |
+
# Get the formatting function for the current metric, or use default
|
| 101 |
+
format_fn = formatting_options.get(metric_name, lambda x: f"{x}") if formatting_options else lambda x: f"{x}"
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# Write the metric to the CSV
|
| 105 |
+
with open(output_file, mode='w', newline='') as csv_file:
|
| 106 |
+
writer = csv.writer(csv_file)
|
| 107 |
+
|
| 108 |
+
header = ["Starting Position/End Position"] + [f"Position {i}" for i in positions]
|
| 109 |
+
writer.writerow(header)
|
| 110 |
+
|
| 111 |
+
# Iterate over the grid and extract the metric values
|
| 112 |
+
for i, row in enumerate(metrics_grid):
|
| 113 |
+
csv_row = [f"Position {positions[i]}"] # Add the column label as the first column
|
| 114 |
+
for cell in row:
|
| 115 |
+
metric = cell[metric_name]
|
| 116 |
+
# Assuming metrics are PyTorch objects with a `compute` method
|
| 117 |
+
# Replace `0.0` with metric.compute() if metric values are computed
|
| 118 |
+
value = 0.0 if not hasattr(metric, "compute") else metric.compute().item()
|
| 119 |
+
csv_row.append(format_fn(value)) # Format the value
|
| 120 |
+
writer.writerow(csv_row)
|
| 121 |
+
print(f"Wrote row for position {positions[i]} with metric {metric_name}")
|
| 122 |
+
|
| 123 |
+
print(f"Saved {metric_name} metrics to {output_file}")
|
| 124 |
+
|
| 125 |
+
formatting_options = {
|
| 126 |
+
"psnr": lambda x: f"{x:.2f}", # Two decimal places
|
| 127 |
+
"lpips": lambda x: f"{x:.4f}", # Four decimal places
|
| 128 |
+
"fid": lambda x: f"{x:.2f}", # Two decimal places
|
| 129 |
+
"ssim": lambda x: f"{x:.4f}", # Four decimal places
|
| 130 |
+
"vif": lambda x: f"{x:.4f}" # Four decimal places
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
write_metrics_to_csv(metrics_grid, ["psnr", "ssim", "lpips", "fid", "vif"], formatting_options=formatting_options, output_dir=f"{output_dir_path}/metrics_output/{model}")
|
| 136 |
+
|
extra/download_dataset.py
ADDED
|
File without changes
|
setup/checkpoints_to_hf.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import HfApi
|
| 2 |
+
import os
|
| 3 |
+
#run with HF_TOKEN = your_hf_token before python_command
|
| 4 |
+
api = HfApi(token=os.getenv("HF_TOKEN"))
|
| 5 |
+
folders = ["/datasets/sai/focal-burst-learning/svd/checkpoints/checkpoint-200000"]
|
| 6 |
+
for folder in folders:
|
| 7 |
+
api.upload_folder(
|
| 8 |
+
folder_path=folder,
|
| 9 |
+
repo_id="tedlasai/learn2refocus",
|
| 10 |
+
repo_type="model",
|
| 11 |
+
path_in_repo=os.path.basename(folder)
|
| 12 |
+
)
|
setup/download_checkpoints.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import snapshot_download
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
# Make sure HF_TOKEN is set in your env beforehand:
|
| 5 |
+
# export HF_TOKEN=your_hf_token
|
| 6 |
+
#get first command line argument
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
mode = sys.argv[1] if len(sys.argv) > 1 else "outsidephotos"
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
REPO_ID = "tedlasai/learn2refocus"
|
| 13 |
+
REPO_TYPE = "model"
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
checkpoints = [
|
| 17 |
+
"checkpoint-200000",
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
+
# This is the root local directory where you want everything saved
|
| 21 |
+
#get path of this file
|
| 22 |
+
LOCAL_TRAINING_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "checkpoints")
|
| 23 |
+
os.makedirs(LOCAL_TRAINING_ROOT, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
# Download only those folders from the repo and place them under LOCAL_TRAINING_ROOT
|
| 26 |
+
snapshot_download(
|
| 27 |
+
repo_id=REPO_ID,
|
| 28 |
+
repo_type=REPO_TYPE,
|
| 29 |
+
local_dir=LOCAL_TRAINING_ROOT,
|
| 30 |
+
local_dir_use_symlinks=False,
|
| 31 |
+
allow_patterns=[f"{name}/*" for name in checkpoints],
|
| 32 |
+
token=os.getenv("HF_TOKEN"),
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
print(f"Done! Checkpoints downloaded under: {LOCAL_TRAINING_ROOT}")
|
setup/download_svd_weights.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import snapshot_download
|
| 2 |
+
|
| 3 |
+
save_dir = "./svdh"
|
| 4 |
+
|
| 5 |
+
# 1. Download the full model repo (weights + config + assets)
|
| 6 |
+
local_dir = snapshot_download(
|
| 7 |
+
repo_id="stabilityai/stable-video-diffusion-img2vid",
|
| 8 |
+
revision="main",
|
| 9 |
+
local_dir=save_dir,
|
| 10 |
+
local_dir_use_symlinks=False # ensures files are fully copied, not symlinked
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
print(f"Model downloaded to: {local_dir}")
|
setup/environment.yaml
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: refocus
|
| 2 |
+
channels:
|
| 3 |
+
- conda-forge
|
| 4 |
+
- defaults
|
| 5 |
+
dependencies:
|
| 6 |
+
- _libgcc_mutex=0.1=main
|
| 7 |
+
- _openmp_mutex=5.1=1_gnu
|
| 8 |
+
- asttokens=3.0.0=pyhd8ed1ab_1
|
| 9 |
+
- bzip2=1.0.8=h5eee18b_6
|
| 10 |
+
- ca-certificates=2025.4.26=hbd8a1cb_0
|
| 11 |
+
- comm=0.2.2=pyhd8ed1ab_1
|
| 12 |
+
- debugpy=1.6.0=py310hd8f1fbe_0
|
| 13 |
+
- entrypoints=0.4=pyhd8ed1ab_1
|
| 14 |
+
- exceptiongroup=1.2.2=pyhd8ed1ab_1
|
| 15 |
+
- executing=2.2.0=pyhd8ed1ab_0
|
| 16 |
+
- ffmpeg=4.3.2=hca11adc_0
|
| 17 |
+
- freetype=2.10.4=h0708190_1
|
| 18 |
+
- gmp=6.2.1=h58526e2_0
|
| 19 |
+
- gnutls=3.6.13=h85f3911_1
|
| 20 |
+
- ipykernel=6.20.2=pyh210e3f2_0
|
| 21 |
+
- ipython=8.36.0=pyh907856f_0
|
| 22 |
+
- jedi=0.19.2=pyhd8ed1ab_1
|
| 23 |
+
- jupyter_client=7.3.4=pyhd8ed1ab_0
|
| 24 |
+
- jupyter_core=5.7.2=pyh31011fe_1
|
| 25 |
+
- lame=3.100=h7f98852_1001
|
| 26 |
+
- ld_impl_linux-64=2.40=h12ee557_0
|
| 27 |
+
- libevent=2.1.12=hdbd6064_1
|
| 28 |
+
- libffi=3.4.4=h6a678d5_1
|
| 29 |
+
- libgcc-ng=11.2.0=h1234567_1
|
| 30 |
+
- libgomp=11.2.0=h1234567_1
|
| 31 |
+
- libpng=1.6.37=h21135ba_2
|
| 32 |
+
- libsodium=1.0.18=h36c2ea0_1
|
| 33 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
| 34 |
+
- libuuid=1.41.5=h5eee18b_0
|
| 35 |
+
- matplotlib-inline=0.1.7=pyhd8ed1ab_1
|
| 36 |
+
- ncurses=6.4=h6a678d5_0
|
| 37 |
+
- nest-asyncio=1.6.0=pyhd8ed1ab_1
|
| 38 |
+
- nettle=3.6=he412f7d_0
|
| 39 |
+
- openh264=2.1.1=h780b84a_0
|
| 40 |
+
- openssl=3.0.16=h5eee18b_0
|
| 41 |
+
- parso=0.8.4=pyhd8ed1ab_1
|
| 42 |
+
- pexpect=4.9.0=pyhd8ed1ab_1
|
| 43 |
+
- pickleshare=0.7.5=pyhd8ed1ab_1004
|
| 44 |
+
- pip=25.0=py310h06a4308_0
|
| 45 |
+
- platformdirs=4.3.7=pyh29332c3_0
|
| 46 |
+
- prompt-toolkit=3.0.51=pyha770c72_0
|
| 47 |
+
- ptyprocess=0.7.0=pyhd8ed1ab_1
|
| 48 |
+
- pure_eval=0.2.3=pyhd8ed1ab_1
|
| 49 |
+
- pygments=2.19.1=pyhd8ed1ab_0
|
| 50 |
+
- python=3.10.16=he870216_1
|
| 51 |
+
- python-dateutil=2.9.0.post0=pyhff2d567_1
|
| 52 |
+
- python_abi=3.10=2_cp310
|
| 53 |
+
- pyzmq=23.0.0=py310h330234f_0
|
| 54 |
+
- readline=8.2=h5eee18b_0
|
| 55 |
+
- setuptools=75.8.0=py310h06a4308_0
|
| 56 |
+
- six=1.17.0=pyhd8ed1ab_0
|
| 57 |
+
- sqlite=3.45.3=h5eee18b_0
|
| 58 |
+
- stack_data=0.6.3=pyhd8ed1ab_1
|
| 59 |
+
- tk=8.6.14=h39e8969_0
|
| 60 |
+
- tmux=3.3a=h5eee18b_1
|
| 61 |
+
- tornado=6.1=py310h5764c6d_3
|
| 62 |
+
- traitlets=5.14.3=pyhd8ed1ab_1
|
| 63 |
+
- typing_extensions=4.13.2=pyh29332c3_0
|
| 64 |
+
- wcwidth=0.2.13=pyhd8ed1ab_1
|
| 65 |
+
- wheel=0.45.1=py310h06a4308_0
|
| 66 |
+
- x264=1!161.3030=h7f98852_1
|
| 67 |
+
- xz=5.6.4=h5eee18b_1
|
| 68 |
+
- zeromq=4.3.4=h9c3ff4c_1
|
| 69 |
+
- zlib=1.2.13=h5eee18b_1
|
| 70 |
+
- pip:
|
| 71 |
+
- absl-py==2.2.0
|
| 72 |
+
- accelerate==1.5.2
|
| 73 |
+
- aiofiles==23.2.1
|
| 74 |
+
- aiohappyeyeballs==2.6.1
|
| 75 |
+
- aiohttp==3.12.14
|
| 76 |
+
- aiosignal==1.4.0
|
| 77 |
+
- annotated-types==0.7.0
|
| 78 |
+
- anyio==4.9.0
|
| 79 |
+
- async-timeout==5.0.1
|
| 80 |
+
- atomicwrites==1.4.1
|
| 81 |
+
- attrs==25.3.0
|
| 82 |
+
- beautifulsoup4==4.13.4
|
| 83 |
+
- certifi==2025.1.31
|
| 84 |
+
- cffi==1.17.1
|
| 85 |
+
- charset-normalizer==3.4.1
|
| 86 |
+
- click==8.1.8
|
| 87 |
+
- colour-science==0.4.6
|
| 88 |
+
- contourpy==1.3.1
|
| 89 |
+
- controlnet-aux==0.0.9
|
| 90 |
+
- cycler==0.12.1
|
| 91 |
+
- decorator==4.4.2
|
| 92 |
+
- decord==0.6.0
|
| 93 |
+
- denku==0.0.51
|
| 94 |
+
- diffusers==0.32.0
|
| 95 |
+
- distro==1.9.0
|
| 96 |
+
- docker-pycreds==0.4.0
|
| 97 |
+
- einops==0.8.1
|
| 98 |
+
- einops-exts==0.0.4
|
| 99 |
+
- fastapi==0.115.11
|
| 100 |
+
- ffmpeg-python==0.2.0
|
| 101 |
+
- ffmpy==0.5.0
|
| 102 |
+
- filelock==3.18.0
|
| 103 |
+
- flatbuffers==25.2.10
|
| 104 |
+
- fonttools==4.56.0
|
| 105 |
+
- frozenlist==1.7.0
|
| 106 |
+
- fsspec==2025.3.0
|
| 107 |
+
- future==1.0.0
|
| 108 |
+
- gdown==5.2.0
|
| 109 |
+
- gitdb==4.0.12
|
| 110 |
+
- gitpython==3.1.44
|
| 111 |
+
- gradio==5.22.0
|
| 112 |
+
- gradio-client==1.8.0
|
| 113 |
+
- groovy==0.1.2
|
| 114 |
+
- h11==0.14.0
|
| 115 |
+
- hf-transfer==0.1.9
|
| 116 |
+
- httpcore==1.0.7
|
| 117 |
+
- httpx==0.28.1
|
| 118 |
+
- huggingface-hub==0.29.3
|
| 119 |
+
- idna==3.10
|
| 120 |
+
- imageio==2.37.0
|
| 121 |
+
- imageio-ffmpeg==0.6.0
|
| 122 |
+
- importlib-metadata==8.6.1
|
| 123 |
+
- jax==0.5.3
|
| 124 |
+
- jaxlib==0.5.3
|
| 125 |
+
- jinja2==3.1.6
|
| 126 |
+
- jiter==0.9.0
|
| 127 |
+
- kiwisolver==1.4.8
|
| 128 |
+
- lazy-loader==0.4
|
| 129 |
+
- lightning==2.5.2
|
| 130 |
+
- lightning-utilities==0.14.3
|
| 131 |
+
- markdown-it-py==3.0.0
|
| 132 |
+
- markupsafe==3.0.2
|
| 133 |
+
- matplotlib==3.10.1
|
| 134 |
+
- mdurl==0.1.2
|
| 135 |
+
- mediapipe==0.10.21
|
| 136 |
+
- ml-dtypes==0.5.1
|
| 137 |
+
- moviepy==1.0.3
|
| 138 |
+
- mpmath==1.3.0
|
| 139 |
+
- multidict==6.6.3
|
| 140 |
+
- networkx==3.4.2
|
| 141 |
+
- numpy==1.26.0
|
| 142 |
+
- nvidia-cublas-cu12==12.4.5.8
|
| 143 |
+
- nvidia-cuda-cupti-cu12==12.4.127
|
| 144 |
+
- nvidia-cuda-nvrtc-cu12==12.4.127
|
| 145 |
+
- nvidia-cuda-runtime-cu12==12.4.127
|
| 146 |
+
- nvidia-cudnn-cu12==9.1.0.70
|
| 147 |
+
- nvidia-cufft-cu12==11.2.1.3
|
| 148 |
+
- nvidia-curand-cu12==10.3.5.147
|
| 149 |
+
- nvidia-cusolver-cu12==11.6.1.9
|
| 150 |
+
- nvidia-cusparse-cu12==12.3.1.170
|
| 151 |
+
- nvidia-cusparselt-cu12==0.6.2
|
| 152 |
+
- nvidia-ml-py==12.570.86
|
| 153 |
+
- nvidia-nccl-cu12==2.21.5
|
| 154 |
+
- nvidia-nvjitlink-cu12==12.4.127
|
| 155 |
+
- nvidia-nvtx-cu12==12.4.127
|
| 156 |
+
- nvitop==1.4.2
|
| 157 |
+
- openai==1.68.2
|
| 158 |
+
- opencv-contrib-python==4.11.0.86
|
| 159 |
+
- opencv-python==4.11.0.86
|
| 160 |
+
- opencv-python-headless==4.11.0.86
|
| 161 |
+
- opt-einsum==3.4.0
|
| 162 |
+
- orjson==3.10.15
|
| 163 |
+
- packaging==24.2
|
| 164 |
+
- pandas==2.2.3
|
| 165 |
+
- peft==0.15.0
|
| 166 |
+
- pillow==9.5.0
|
| 167 |
+
- proglog==0.1.10
|
| 168 |
+
- propcache==0.3.2
|
| 169 |
+
- protobuf==4.25.6
|
| 170 |
+
- psutil==5.9.8
|
| 171 |
+
- ptflops==0.7.4
|
| 172 |
+
- pycparser==2.22
|
| 173 |
+
- pydantic==2.10.6
|
| 174 |
+
- pydantic-core==2.27.2
|
| 175 |
+
- pydub==0.25.1
|
| 176 |
+
- pyparsing==3.2.1
|
| 177 |
+
- pysocks==1.7.1
|
| 178 |
+
- python-dotenv==1.0.1
|
| 179 |
+
- python-multipart==0.0.20
|
| 180 |
+
- pytorch-lightning==2.5.2
|
| 181 |
+
- pytz==2025.1
|
| 182 |
+
- pyyaml==6.0.2
|
| 183 |
+
- regex==2024.11.6
|
| 184 |
+
- requests==2.32.3
|
| 185 |
+
- rich==13.9.4
|
| 186 |
+
- ruff==0.11.2
|
| 187 |
+
- safehttpx==0.1.6
|
| 188 |
+
- safetensors==0.5.3
|
| 189 |
+
- scikit-image==0.24.0
|
| 190 |
+
- scikit-video==1.1.11
|
| 191 |
+
- scipy==1.15.2
|
| 192 |
+
- semantic-version==2.10.0
|
| 193 |
+
- sentencepiece==0.2.0
|
| 194 |
+
- sentry-sdk==2.24.0
|
| 195 |
+
- setproctitle==1.3.5
|
| 196 |
+
- shellingham==1.5.4
|
| 197 |
+
- smmap==5.0.2
|
| 198 |
+
- sniffio==1.3.1
|
| 199 |
+
- sounddevice==0.5.1
|
| 200 |
+
- soupsieve==2.7
|
| 201 |
+
- spaces==0.32.0
|
| 202 |
+
- spandrel==0.4.1
|
| 203 |
+
- starlette==0.46.1
|
| 204 |
+
- sympy==1.13.1
|
| 205 |
+
- tifffile==2025.3.13
|
| 206 |
+
- timm==0.6.7
|
| 207 |
+
- tokenizers==0.21.1
|
| 208 |
+
- tomlkit==0.13.2
|
| 209 |
+
- torch==2.6.0
|
| 210 |
+
- torch-fidelity==0.3.0
|
| 211 |
+
- torchmetrics==1.7.4
|
| 212 |
+
- torchvision==0.21.0
|
| 213 |
+
- tqdm==4.67.1
|
| 214 |
+
- transformers==4.50.0
|
| 215 |
+
- triton==3.2.0
|
| 216 |
+
- typer==0.15.2
|
| 217 |
+
- typing-extensions==4.12.2
|
| 218 |
+
- tzdata==2025.1
|
| 219 |
+
- urllib3==2.3.0
|
| 220 |
+
- uvicorn==0.34.0
|
| 221 |
+
- videoio==0.3.0
|
| 222 |
+
- wandb==0.19.8
|
| 223 |
+
- websockets==15.0.1
|
| 224 |
+
- yarl==1.20.1
|
| 225 |
+
- zipp==3.21.0
|
simplified_inference.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
"""Script to fine-tune Stable Video Diffusion."""
|
| 18 |
+
|
| 19 |
+
import math
|
| 20 |
+
import os
|
| 21 |
+
from torch.utils.data import Dataset
|
| 22 |
+
import accelerate
|
| 23 |
+
import numpy as np
|
| 24 |
+
import torch
|
| 25 |
+
import torch.nn.functional as F
|
| 26 |
+
import torch.utils.checkpoint
|
| 27 |
+
from accelerate.logging import get_logger
|
| 28 |
+
from accelerate.utils import set_seed
|
| 29 |
+
from packaging import version
|
| 30 |
+
from tqdm.auto import tqdm
|
| 31 |
+
from transformers import CLIPVisionModelWithProjection
|
| 32 |
+
from simplified_validation import valid_net
|
| 33 |
+
from diffusers import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel
|
| 34 |
+
from diffusers.utils import check_min_version
|
| 35 |
+
import argparse
|
| 36 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
| 37 |
+
check_min_version("0.24.0.dev0")
|
| 38 |
+
|
| 39 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 40 |
+
import numpy as np
|
| 41 |
+
import torch
|
| 42 |
+
import os
|
| 43 |
+
import glob
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def parse_args():
|
| 48 |
+
parser = argparse.ArgumentParser(description="SVD Training Script")
|
| 49 |
+
parser.add_argument(
|
| 50 |
+
"--config",
|
| 51 |
+
type=str,
|
| 52 |
+
default="/datasets/sai/focal-burst-learning/svd/training/configs/outside_photos.yaml",
|
| 53 |
+
help="Path to the config file.",
|
| 54 |
+
)
|
| 55 |
+
#seed should be int that default 0 (optional)
|
| 56 |
+
|
| 57 |
+
parser.add_argument(
|
| 58 |
+
"--image_path",
|
| 59 |
+
type=str,
|
| 60 |
+
required=True,
|
| 61 |
+
help="Path to image input or directory containing input images",
|
| 62 |
+
)
|
| 63 |
+
parser.add_argument(
|
| 64 |
+
"--seed",
|
| 65 |
+
type=int,
|
| 66 |
+
default=0,
|
| 67 |
+
help="A seed for reproducible training.",
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
parser.add_argument(
|
| 71 |
+
"--learn2refocus_hf_repo_path",
|
| 72 |
+
type=str,
|
| 73 |
+
default="tedlasai/learn2refocus",
|
| 74 |
+
help="hf repo containing the weight files",
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
parser.add_argument(
|
| 78 |
+
"--pretrained_model_path",
|
| 79 |
+
type=str,
|
| 80 |
+
default="stabilityai/stable-video-diffusion-img2vid",
|
| 81 |
+
help="repo id or path for pretrained StableVideo Diffusion model",
|
| 82 |
+
)
|
| 83 |
+
parser.add_argument(
|
| 84 |
+
"--output_dir",
|
| 85 |
+
type=str,
|
| 86 |
+
default="outputs/simple_inference",
|
| 87 |
+
help="path to output",
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
parser.add_argument(
|
| 91 |
+
"--num_inference_steps",
|
| 92 |
+
type=int,
|
| 93 |
+
default=25,
|
| 94 |
+
help="number of DDPM steps",
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
parser.add_argument(
|
| 98 |
+
"--device",
|
| 99 |
+
type=str,
|
| 100 |
+
default="cuda",
|
| 101 |
+
help="inference device",
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
args = parser.parse_args()
|
| 106 |
+
|
| 107 |
+
return args
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def find_scale(height, width):
|
| 112 |
+
max_pixels = 500000
|
| 113 |
+
|
| 114 |
+
# Start with no scaling
|
| 115 |
+
scale = 1.0
|
| 116 |
+
|
| 117 |
+
while True:
|
| 118 |
+
# Calculate the scaled dimensions
|
| 119 |
+
scaled_height = math.floor((height * scale) / 64) * 64
|
| 120 |
+
scaled_width = math.floor((width * scale) / 64) * 64
|
| 121 |
+
|
| 122 |
+
# Check if the scaled dimensions meet the pixel constraint
|
| 123 |
+
if scaled_height * scaled_width <= max_pixels:
|
| 124 |
+
return scaled_height, scaled_width
|
| 125 |
+
|
| 126 |
+
# Reduce the scale slightly
|
| 127 |
+
scale -= 0.01
|
| 128 |
+
|
| 129 |
+
def convert_to_batch(image, input_focal_position, sample_frames=9):
|
| 130 |
+
scene, focal_stack_num = image, input_focal_position
|
| 131 |
+
from PIL import Image
|
| 132 |
+
with Image.open(scene) as img:
|
| 133 |
+
|
| 134 |
+
icc_profile = img.info.get("icc_profile")
|
| 135 |
+
if icc_profile is None:
|
| 136 |
+
icc_profile = "none"
|
| 137 |
+
original_pixels = torch.from_numpy(np.array(img)).float().permute(2,0,1)
|
| 138 |
+
original_pixels = original_pixels / 255
|
| 139 |
+
width, height = img.size
|
| 140 |
+
scaled_width, scaled_height = find_scale(width, height)
|
| 141 |
+
|
| 142 |
+
img_resized = img.resize((scaled_width, scaled_height))
|
| 143 |
+
img_tensor = torch.from_numpy(np.array(img_resized)).float()
|
| 144 |
+
img_normalized = img_tensor / 127.5 - 1
|
| 145 |
+
img_normalized = img_normalized.permute(2, 0, 1)
|
| 146 |
+
|
| 147 |
+
pixels = torch.zeros((1, sample_frames, 3, scaled_height, scaled_width))
|
| 148 |
+
pixels[0, focal_stack_num] = img_normalized
|
| 149 |
+
|
| 150 |
+
name = os.path.splitext(os.path.basename(scene))[0]
|
| 151 |
+
return {"pixel_values": pixels, "focal_stack_num": focal_stack_num, "original_pixel_values": original_pixels, 'icc_profile': icc_profile, "name": name}
|
| 152 |
+
|
| 153 |
+
def main():
|
| 154 |
+
args = parse_args()
|
| 155 |
+
|
| 156 |
+
if args.seed is not None:
|
| 157 |
+
set_seed(args.seed)
|
| 158 |
+
|
| 159 |
+
if args.output_dir is not None:
|
| 160 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 161 |
+
|
| 162 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 163 |
+
|
| 164 |
+
# inference-only modules
|
| 165 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 166 |
+
args.pretrained_model_path, subfolder="image_encoder"
|
| 167 |
+
)
|
| 168 |
+
vae = AutoencoderKLTemporalDecoder.from_pretrained(
|
| 169 |
+
args.pretrained_model_path, subfolder="vae", variant="fp16"
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
weight_dtype = torch.float32
|
| 173 |
+
image_encoder.requires_grad_(False).to(device, dtype=weight_dtype)
|
| 174 |
+
vae.requires_grad_(False).to(device, dtype=weight_dtype)
|
| 175 |
+
|
| 176 |
+
# ---- load UNet from checkpoint root (this reads unet/config.json + diffusion_pytorch_model.safetensors)
|
| 177 |
+
unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
| 178 |
+
args.learn2refocus_hf_repo_path, subfolder="checkpoint-200000/unet"
|
| 179 |
+
).to(device)
|
| 180 |
+
|
| 181 |
+
batch = convert_to_batch(args.image_path, input_focal_position=6)
|
| 182 |
+
|
| 183 |
+
unet.eval(); image_encoder.eval(); vae.eval()
|
| 184 |
+
with torch.no_grad():
|
| 185 |
+
valid_net(args, batch, unet, image_encoder, vae, 0, weight_dtype, device, num_inference_steps=args.num_inference_steps)
|
| 186 |
+
|
| 187 |
+
if __name__ == "__main__":
|
| 188 |
+
main()
|
| 189 |
+
|
| 190 |
+
|
simplified_pipeline.py
ADDED
|
@@ -0,0 +1,807 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
import random
|
| 18 |
+
from typing import Callable, Dict, List, Optional, Union
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
import PIL.Image
|
| 22 |
+
import torch
|
| 23 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
| 24 |
+
|
| 25 |
+
from diffusers.image_processor import PipelineImageInput
|
| 26 |
+
from diffusers.models import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel
|
| 27 |
+
from diffusers.schedulers import EulerDiscreteScheduler
|
| 28 |
+
from diffusers.utils import BaseOutput, logging, replace_example_docstring
|
| 29 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
| 30 |
+
from diffusers.video_processor import VideoProcessor
|
| 31 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 32 |
+
import torch.nn.functional as F
|
| 33 |
+
from tqdm import tqdm
|
| 34 |
+
from einops import rearrange
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def tensor_to_vae_latent(t, vae, otype="sample"):
|
| 38 |
+
video_length = t.shape[1]
|
| 39 |
+
|
| 40 |
+
t = rearrange(t, "b f c h w -> (b f) c h w")
|
| 41 |
+
if otype == "sample":
|
| 42 |
+
latents = vae.encode(t).latent_dist.sample()
|
| 43 |
+
else:
|
| 44 |
+
latents = vae.encode(t).latent_dist.mode()
|
| 45 |
+
latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length)
|
| 46 |
+
latents = latents * vae.config.scaling_factor
|
| 47 |
+
|
| 48 |
+
return latents
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 52 |
+
|
| 53 |
+
EXAMPLE_DOC_STRING = """
|
| 54 |
+
Examples:
|
| 55 |
+
```py
|
| 56 |
+
>>> from diffusers import StableVideoDiffusionPipeline
|
| 57 |
+
>>> from diffusers.utils import load_image, export_to_video
|
| 58 |
+
|
| 59 |
+
>>> pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 60 |
+
... "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
| 61 |
+
... )
|
| 62 |
+
>>> pipe.to("cuda")
|
| 63 |
+
|
| 64 |
+
>>> image = load_image(
|
| 65 |
+
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd-docstring-example.jpeg"
|
| 66 |
+
... )
|
| 67 |
+
>>> image = image.resize((1024, 576))
|
| 68 |
+
|
| 69 |
+
>>> frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]
|
| 70 |
+
>>> export_to_video(frames, "generated.mp4", fps=7)
|
| 71 |
+
```
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def _append_dims(x, target_dims):
|
| 76 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
| 77 |
+
dims_to_append = target_dims - x.ndim
|
| 78 |
+
if dims_to_append < 0:
|
| 79 |
+
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
|
| 80 |
+
return x[(...,) + (None,) * dims_to_append]
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 84 |
+
def retrieve_timesteps(
|
| 85 |
+
scheduler,
|
| 86 |
+
num_inference_steps: Optional[int] = None,
|
| 87 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 88 |
+
timesteps: Optional[List[int]] = None,
|
| 89 |
+
sigmas: Optional[List[float]] = None,
|
| 90 |
+
**kwargs,
|
| 91 |
+
):
|
| 92 |
+
r"""
|
| 93 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 94 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
scheduler (`SchedulerMixin`):
|
| 98 |
+
The scheduler to get timesteps from.
|
| 99 |
+
num_inference_steps (`int`):
|
| 100 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 101 |
+
must be `None`.
|
| 102 |
+
device (`str` or `torch.device`, *optional*):
|
| 103 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 104 |
+
timesteps (`List[int]`, *optional*):
|
| 105 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 106 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 107 |
+
sigmas (`List[float]`, *optional*):
|
| 108 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 109 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 110 |
+
|
| 111 |
+
Returns:
|
| 112 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 113 |
+
second element is the number of inference steps.
|
| 114 |
+
"""
|
| 115 |
+
if timesteps is not None and sigmas is not None:
|
| 116 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 117 |
+
if timesteps is not None:
|
| 118 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 119 |
+
if not accepts_timesteps:
|
| 120 |
+
raise ValueError(
|
| 121 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 122 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 123 |
+
)
|
| 124 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 125 |
+
timesteps = scheduler.timesteps
|
| 126 |
+
num_inference_steps = len(timesteps)
|
| 127 |
+
elif sigmas is not None:
|
| 128 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 129 |
+
if not accept_sigmas:
|
| 130 |
+
raise ValueError(
|
| 131 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 132 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 133 |
+
)
|
| 134 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 135 |
+
timesteps = scheduler.timesteps
|
| 136 |
+
num_inference_steps = len(timesteps)
|
| 137 |
+
else:
|
| 138 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 139 |
+
timesteps = scheduler.timesteps
|
| 140 |
+
return timesteps, num_inference_steps
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
@dataclass
|
| 144 |
+
class StableVideoDiffusionPipelineOutput(BaseOutput):
|
| 145 |
+
r"""
|
| 146 |
+
Output class for Stable Video Diffusion pipeline.
|
| 147 |
+
|
| 148 |
+
Args:
|
| 149 |
+
frames (`[List[List[PIL.Image.Image]]`, `np.ndarray`, `torch.Tensor`]):
|
| 150 |
+
List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size,
|
| 151 |
+
num_frames, height, width, num_channels)`.
|
| 152 |
+
"""
|
| 153 |
+
|
| 154 |
+
frames: Union[List[List[PIL.Image.Image]], np.ndarray, torch.Tensor]
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class StableVideoDiffusionPipeline(DiffusionPipeline):
|
| 158 |
+
r"""
|
| 159 |
+
Pipeline to generate video from an input image using Stable Video Diffusion.
|
| 160 |
+
|
| 161 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
| 162 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
| 163 |
+
|
| 164 |
+
Args:
|
| 165 |
+
vae ([`AutoencoderKLTemporalDecoder`]):
|
| 166 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
| 167 |
+
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
|
| 168 |
+
Frozen CLIP image-encoder
|
| 169 |
+
([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).
|
| 170 |
+
unet ([`UNetSpatioTemporalConditionModel`]):
|
| 171 |
+
A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.
|
| 172 |
+
scheduler ([`EulerDiscreteScheduler`]):
|
| 173 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
| 174 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
| 175 |
+
A `CLIPImageProcessor` to extract features from generated images.
|
| 176 |
+
"""
|
| 177 |
+
|
| 178 |
+
model_cpu_offload_seq = "image_encoder->unet->vae"
|
| 179 |
+
_callback_tensor_inputs = ["latents"]
|
| 180 |
+
|
| 181 |
+
def __init__(
|
| 182 |
+
self,
|
| 183 |
+
vae: AutoencoderKLTemporalDecoder,
|
| 184 |
+
image_encoder: CLIPVisionModelWithProjection,
|
| 185 |
+
unet: UNetSpatioTemporalConditionModel,
|
| 186 |
+
scheduler: EulerDiscreteScheduler,
|
| 187 |
+
feature_extractor: CLIPImageProcessor,
|
| 188 |
+
):
|
| 189 |
+
super().__init__()
|
| 190 |
+
|
| 191 |
+
self.register_modules(
|
| 192 |
+
vae=vae,
|
| 193 |
+
image_encoder=image_encoder,
|
| 194 |
+
unet=unet,
|
| 195 |
+
scheduler=scheduler,
|
| 196 |
+
feature_extractor=feature_extractor,
|
| 197 |
+
)
|
| 198 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 199 |
+
self.video_processor = VideoProcessor(do_resize=True, vae_scale_factor=self.vae_scale_factor)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def _encode_image(
|
| 204 |
+
self,
|
| 205 |
+
image: PipelineImageInput,
|
| 206 |
+
device: Union[str, torch.device],
|
| 207 |
+
num_videos_per_prompt: int,
|
| 208 |
+
do_classifier_free_guidance: bool,
|
| 209 |
+
) -> torch.Tensor:
|
| 210 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 211 |
+
|
| 212 |
+
if not isinstance(image, torch.Tensor):
|
| 213 |
+
image = self.video_processor.pil_to_numpy(image)
|
| 214 |
+
image = self.video_processor.numpy_to_pt(image)
|
| 215 |
+
|
| 216 |
+
# We normalize the image before resizing to match with the original implementation.
|
| 217 |
+
# Then we unnormalize it after resizing.
|
| 218 |
+
image = image * 2.0 - 1.0
|
| 219 |
+
image = _resize_with_antialiasing(image, (224, 224))
|
| 220 |
+
image = (image + 1.0) / 2.0
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
# Normalize the image with for CLIP input
|
| 224 |
+
image = self.feature_extractor(
|
| 225 |
+
images=image,
|
| 226 |
+
do_normalize=True,
|
| 227 |
+
do_center_crop=False,
|
| 228 |
+
do_resize=False,
|
| 229 |
+
do_rescale=False,
|
| 230 |
+
return_tensors="pt",
|
| 231 |
+
).pixel_values
|
| 232 |
+
|
| 233 |
+
image = image.to(device=device, dtype=dtype)
|
| 234 |
+
image_embeddings = self.image_encoder(image).image_embeds
|
| 235 |
+
image_embeddings = image_embeddings.unsqueeze(1)
|
| 236 |
+
|
| 237 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
| 238 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
| 239 |
+
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
|
| 240 |
+
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
| 241 |
+
|
| 242 |
+
if do_classifier_free_guidance:
|
| 243 |
+
negative_image_embeddings = torch.zeros_like(image_embeddings)
|
| 244 |
+
|
| 245 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 246 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 247 |
+
# to avoid doing two forward passes
|
| 248 |
+
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
|
| 249 |
+
|
| 250 |
+
return image_embeddings
|
| 251 |
+
|
| 252 |
+
def _encode_vae_image(
|
| 253 |
+
self,
|
| 254 |
+
image: torch.Tensor,
|
| 255 |
+
device: Union[str, torch.device],
|
| 256 |
+
num_videos_per_prompt: int,
|
| 257 |
+
do_classifier_free_guidance: bool,
|
| 258 |
+
):
|
| 259 |
+
image = image.to(device=device)
|
| 260 |
+
image_latents = self.vae.encode(image).latent_dist.mode()
|
| 261 |
+
|
| 262 |
+
# duplicate image_latents for each generation per prompt, using mps friendly method
|
| 263 |
+
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)
|
| 264 |
+
|
| 265 |
+
if do_classifier_free_guidance:
|
| 266 |
+
negative_image_latents = torch.zeros_like(image_latents)
|
| 267 |
+
|
| 268 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 269 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 270 |
+
# to avoid doing two forward passes
|
| 271 |
+
image_latents = torch.cat([negative_image_latents, image_latents])
|
| 272 |
+
|
| 273 |
+
return image_latents
|
| 274 |
+
|
| 275 |
+
def _get_add_time_ids(
|
| 276 |
+
self,
|
| 277 |
+
fps: int,
|
| 278 |
+
motion_bucket_id: int,
|
| 279 |
+
noise_aug_strength: float,
|
| 280 |
+
dtype: torch.dtype,
|
| 281 |
+
batch_size: int,
|
| 282 |
+
num_videos_per_prompt: int,
|
| 283 |
+
do_classifier_free_guidance: bool,
|
| 284 |
+
):
|
| 285 |
+
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
|
| 286 |
+
|
| 287 |
+
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids)
|
| 288 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
| 289 |
+
|
| 290 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
| 291 |
+
raise ValueError(
|
| 292 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 296 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
|
| 297 |
+
|
| 298 |
+
if do_classifier_free_guidance:
|
| 299 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids])
|
| 300 |
+
|
| 301 |
+
return add_time_ids
|
| 302 |
+
|
| 303 |
+
def decode_latents(self, latents: torch.Tensor, num_frames: int, decode_chunk_size: int = 14):
|
| 304 |
+
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
|
| 305 |
+
latents = latents.flatten(0, 1)
|
| 306 |
+
|
| 307 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
| 308 |
+
|
| 309 |
+
forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
|
| 310 |
+
accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
|
| 311 |
+
|
| 312 |
+
# decode decode_chunk_size frames at a time to avoid OOM
|
| 313 |
+
frames = []
|
| 314 |
+
for i in range(0, latents.shape[0], decode_chunk_size):
|
| 315 |
+
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
|
| 316 |
+
decode_kwargs = {}
|
| 317 |
+
if accepts_num_frames:
|
| 318 |
+
# we only pass num_frames_in if it's expected
|
| 319 |
+
decode_kwargs["num_frames"] = num_frames_in
|
| 320 |
+
|
| 321 |
+
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
|
| 322 |
+
frames.append(frame)
|
| 323 |
+
frames = torch.cat(frames, dim=0)
|
| 324 |
+
|
| 325 |
+
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
|
| 326 |
+
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
|
| 327 |
+
|
| 328 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 329 |
+
frames = frames.float()
|
| 330 |
+
return frames
|
| 331 |
+
|
| 332 |
+
def check_inputs(self, image, height, width):
|
| 333 |
+
if (
|
| 334 |
+
not isinstance(image, torch.Tensor)
|
| 335 |
+
and not isinstance(image, PIL.Image.Image)
|
| 336 |
+
and not isinstance(image, list)
|
| 337 |
+
):
|
| 338 |
+
raise ValueError(
|
| 339 |
+
"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
| 340 |
+
f" {type(image)}"
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 344 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 345 |
+
|
| 346 |
+
def prepare_latents(
|
| 347 |
+
self,
|
| 348 |
+
batch_size: int,
|
| 349 |
+
num_frames: int,
|
| 350 |
+
num_channels_latents: int,
|
| 351 |
+
height: int,
|
| 352 |
+
width: int,
|
| 353 |
+
dtype: torch.dtype,
|
| 354 |
+
device: Union[str, torch.device],
|
| 355 |
+
generator: torch.Generator,
|
| 356 |
+
latents: Optional[torch.Tensor] = None,
|
| 357 |
+
):
|
| 358 |
+
shape = (
|
| 359 |
+
batch_size,
|
| 360 |
+
num_frames,
|
| 361 |
+
num_channels_latents // 2,
|
| 362 |
+
height // self.vae_scale_factor,
|
| 363 |
+
width // self.vae_scale_factor,
|
| 364 |
+
)
|
| 365 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 366 |
+
raise ValueError(
|
| 367 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 368 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
if latents is None:
|
| 372 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 373 |
+
else:
|
| 374 |
+
latents = latents.to(device)
|
| 375 |
+
|
| 376 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 377 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 378 |
+
return latents
|
| 379 |
+
|
| 380 |
+
@property
|
| 381 |
+
def guidance_scale(self):
|
| 382 |
+
return self._guidance_scale
|
| 383 |
+
|
| 384 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 385 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 386 |
+
# corresponds to doing no classifier free guidance.
|
| 387 |
+
@property
|
| 388 |
+
def do_classifier_free_guidance(self):
|
| 389 |
+
if isinstance(self.guidance_scale, (int, float)):
|
| 390 |
+
return self.guidance_scale > 0
|
| 391 |
+
return self.guidance_scale.max() > 0
|
| 392 |
+
|
| 393 |
+
@property
|
| 394 |
+
def num_timesteps(self):
|
| 395 |
+
return self._num_timesteps
|
| 396 |
+
|
| 397 |
+
#@torch.no_grad()
|
| 398 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 399 |
+
def __call__(
|
| 400 |
+
self,
|
| 401 |
+
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor],
|
| 402 |
+
height: int = 576,
|
| 403 |
+
width: int = 1024,
|
| 404 |
+
num_frames: Optional[int] = None,
|
| 405 |
+
num_inference_steps: int = 25,
|
| 406 |
+
sigmas: Optional[List[float]] = None,
|
| 407 |
+
min_guidance_scale: float = 1.0,
|
| 408 |
+
max_guidance_scale: float = 3.0,
|
| 409 |
+
fps: int = 7,
|
| 410 |
+
motion_bucket_id: int = 127,
|
| 411 |
+
noise_aug_strength: float = 0.02,
|
| 412 |
+
decode_chunk_size: Optional[int] = None,
|
| 413 |
+
num_videos_per_prompt: Optional[int] = 1,
|
| 414 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 415 |
+
latents: Optional[torch.Tensor] = None,
|
| 416 |
+
output_type: Optional[str] = "pil",
|
| 417 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 418 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 419 |
+
return_dict: bool = True,
|
| 420 |
+
focal_stack_num: int = None,
|
| 421 |
+
):
|
| 422 |
+
r"""
|
| 423 |
+
The call function to the pipeline for generation.
|
| 424 |
+
|
| 425 |
+
Args:
|
| 426 |
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`):
|
| 427 |
+
Image(s) to guide image generation. If you provide a tensor, the expected value range is between `[0,
|
| 428 |
+
1]`.
|
| 429 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 430 |
+
The height in pixels of the generated image.
|
| 431 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 432 |
+
The width in pixels of the generated image.
|
| 433 |
+
num_frames (`int`, *optional*):
|
| 434 |
+
The number of video frames to generate. Defaults to `self.unet.config.num_frames` (14 for
|
| 435 |
+
`stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`).
|
| 436 |
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
| 437 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality video at the
|
| 438 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
| 439 |
+
sigmas (`List[float]`, *optional*):
|
| 440 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 441 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 442 |
+
will be used.
|
| 443 |
+
min_guidance_scale (`float`, *optional*, defaults to 1.0):
|
| 444 |
+
The minimum guidance scale. Used for the classifier free guidance with first frame.
|
| 445 |
+
max_guidance_scale (`float`, *optional*, defaults to 3.0):
|
| 446 |
+
The maximum guidance scale. Used for the classifier free guidance with last frame.
|
| 447 |
+
fps (`int`, *optional*, defaults to 7):
|
| 448 |
+
Frames per second. The rate at which the generated images shall be exported to a video after
|
| 449 |
+
generation. Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
|
| 450 |
+
motion_bucket_id (`int`, *optional*, defaults to 127):
|
| 451 |
+
Used for conditioning the amount of motion for the generation. The higher the number the more motion
|
| 452 |
+
will be in the video.
|
| 453 |
+
noise_aug_strength (`float`, *optional*, defaults to 0.02):
|
| 454 |
+
The amount of noise added to the init image, the higher it is the less the video will look like the
|
| 455 |
+
init image. Increase it for more motion.
|
| 456 |
+
decode_chunk_size (`int`, *optional*):
|
| 457 |
+
The number of frames to decode at a time. Higher chunk size leads to better temporal consistency at the
|
| 458 |
+
expense of more memory usage. By default, the decoder decodes all frames at once for maximal quality.
|
| 459 |
+
For lower memory usage, reduce `decode_chunk_size`.
|
| 460 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
| 461 |
+
The number of videos to generate per prompt.
|
| 462 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 463 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 464 |
+
generation deterministic.
|
| 465 |
+
latents (`torch.Tensor`, *optional*):
|
| 466 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
|
| 467 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 468 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 469 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 470 |
+
The output format of the generated image. Choose between `pil`, `np` or `pt`.
|
| 471 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 472 |
+
A function that is called at the end of each denoising step during inference. The function is called
|
| 473 |
+
with the following arguments:
|
| 474 |
+
`callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`.
|
| 475 |
+
`callback_kwargs` will include a list of all tensors as specified by
|
| 476 |
+
`callback_on_step_end_tensor_inputs`.
|
| 477 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 478 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 479 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 480 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 481 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 482 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 483 |
+
plain tuple.
|
| 484 |
+
|
| 485 |
+
Examples:
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
[`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:
|
| 489 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is
|
| 490 |
+
returned, otherwise a `tuple` of (`List[List[PIL.Image.Image]]` or `np.ndarray` or `torch.Tensor`) is
|
| 491 |
+
returned.
|
| 492 |
+
"""
|
| 493 |
+
|
| 494 |
+
with torch.no_grad():
|
| 495 |
+
|
| 496 |
+
# 0. Default height and width to unet
|
| 497 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 498 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 499 |
+
|
| 500 |
+
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
|
| 501 |
+
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
|
| 502 |
+
|
| 503 |
+
# 1. Check inputs. Raise error if not correct
|
| 504 |
+
self.check_inputs(image, height, width)
|
| 505 |
+
|
| 506 |
+
# 2. Define call parameters
|
| 507 |
+
if isinstance(image, PIL.Image.Image):
|
| 508 |
+
batch_size = 1
|
| 509 |
+
elif isinstance(image, list):
|
| 510 |
+
batch_size = len(image)
|
| 511 |
+
else:
|
| 512 |
+
batch_size = image.shape[0]
|
| 513 |
+
device = self._execution_device
|
| 514 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 515 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 516 |
+
# corresponds to doing no classifier free guidance.
|
| 517 |
+
self._guidance_scale = max_guidance_scale
|
| 518 |
+
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
# NOTE: Stable Video Diffusion was conditioned on fps - 1, which is why it is reduced here.
|
| 522 |
+
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
|
| 523 |
+
fps = fps - 1
|
| 524 |
+
|
| 525 |
+
# 4. Encode input image using VAE
|
| 526 |
+
# first_image = image[0, 0:1]
|
| 527 |
+
# first_image = self.video_processor.preprocess(first_image*0.5+0.5, height=height, width=width).to(device)
|
| 528 |
+
# noise = randn_tensor(first_image.shape, generator=generator, device=device, dtype=image.dtype)
|
| 529 |
+
# first_image = first_image + noise_aug_strength * noise #you add this noise to have a version of the image that the vae can denoise
|
| 530 |
+
|
| 531 |
+
# first_image = self.video_processor.preprocess(first_image*0.5+0.5, height=height, width=width).to(device)
|
| 532 |
+
|
| 533 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 534 |
+
if needs_upcasting:
|
| 535 |
+
self.vae.to(dtype=torch.float32)
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
image_latents = tensor_to_vae_latent(image, self.vae, otype="mode")/self.vae.config.scaling_factor
|
| 539 |
+
#noise = randn_tensor(image_latents.shape, generator=generator, device=device, dtype=image.dtype)
|
| 540 |
+
#image_latents = image_latents + noise_aug_strength * noise #you add this noise to have a version of the image that the vae can denoise
|
| 541 |
+
|
| 542 |
+
# old_image_latents = self._encode_vae_image(
|
| 543 |
+
# first_image,
|
| 544 |
+
# device=device,
|
| 545 |
+
# num_videos_per_prompt=num_videos_per_prompt,
|
| 546 |
+
# do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 547 |
+
# )
|
| 548 |
+
|
| 549 |
+
if self.do_classifier_free_guidance:
|
| 550 |
+
negative_image_latents = torch.zeros_like(image_latents)
|
| 551 |
+
|
| 552 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 553 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 554 |
+
# to avoid doing two forward passes
|
| 555 |
+
image_latents = torch.cat([negative_image_latents, image_latents])
|
| 556 |
+
|
| 557 |
+
image_latents = image_latents.to(torch.float32)
|
| 558 |
+
|
| 559 |
+
# cast back to fp16 if needed
|
| 560 |
+
if needs_upcasting:
|
| 561 |
+
self.vae.to(dtype=torch.float16)
|
| 562 |
+
|
| 563 |
+
# Repeat the image latents for each frame so we can concatenate them with the noise
|
| 564 |
+
# image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
|
| 565 |
+
#image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)
|
| 566 |
+
mask = torch.zeros_like(image_latents)
|
| 567 |
+
|
| 568 |
+
if focal_stack_num is not None:
|
| 569 |
+
frame_idx = focal_stack_num
|
| 570 |
+
mask[:, frame_idx] = 1
|
| 571 |
+
|
| 572 |
+
original_image_latents = image_latents.clone()
|
| 573 |
+
image_latents = image_latents * mask
|
| 574 |
+
|
| 575 |
+
mask = mask == 1 #mask is a boolean tensor
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
clip_image = image[0, frame_idx: frame_idx+1]
|
| 579 |
+
resized_clip_image = _resize_with_antialiasing(clip_image, (224, 224))
|
| 580 |
+
image_embeddings = self._encode_image(resized_clip_image, device, num_videos_per_prompt, self.do_classifier_free_guidance)
|
| 581 |
+
|
| 582 |
+
if motion_bucket_id is None: #this hits for ablation_time at validation time
|
| 583 |
+
motion_bucket_id = 0
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
# 5. Get Added Time IDs
|
| 587 |
+
added_time_ids = self._get_add_time_ids(
|
| 588 |
+
fps,
|
| 589 |
+
motion_bucket_id,
|
| 590 |
+
noise_aug_strength,
|
| 591 |
+
image_embeddings.dtype,
|
| 592 |
+
batch_size,
|
| 593 |
+
num_videos_per_prompt,
|
| 594 |
+
self.do_classifier_free_guidance,
|
| 595 |
+
)
|
| 596 |
+
added_time_ids = added_time_ids.to(device)
|
| 597 |
+
|
| 598 |
+
# 6. Prepare timesteps
|
| 599 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, None, sigmas)
|
| 600 |
+
|
| 601 |
+
# 7. Prepare latent variables
|
| 602 |
+
num_channels_latents = self.unet.config.in_channels
|
| 603 |
+
latents = self.prepare_latents(
|
| 604 |
+
batch_size * num_videos_per_prompt,
|
| 605 |
+
num_frames,
|
| 606 |
+
num_channels_latents,
|
| 607 |
+
height,
|
| 608 |
+
width,
|
| 609 |
+
image_embeddings.dtype,
|
| 610 |
+
device,
|
| 611 |
+
generator,
|
| 612 |
+
latents,
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
# 8. Prepare guidance scale
|
| 616 |
+
guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0)
|
| 617 |
+
guidance_scale = guidance_scale.to(device, latents.dtype)
|
| 618 |
+
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)
|
| 619 |
+
guidance_scale = _append_dims(guidance_scale, latents.ndim)
|
| 620 |
+
|
| 621 |
+
self._guidance_scale = guidance_scale
|
| 622 |
+
|
| 623 |
+
# 9. Denoising loop
|
| 624 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 625 |
+
self._num_timesteps = len(timesteps)
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
alphas_cumprod = 1 / (1 + self.scheduler.sigmas**2)
|
| 629 |
+
alphas = alphas_cumprod / torch.cat((torch.tensor([1.0]), alphas_cumprod[:-1]))
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
progress_bar = tqdm(range(num_inference_steps))
|
| 633 |
+
for i, t in enumerate(timesteps):
|
| 634 |
+
# expand the latents if we are doing classifier free guidance - this is because we have the unconditional and the conditional portion
|
| 635 |
+
#this is concatenation along the batch dimension
|
| 636 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 637 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 638 |
+
|
| 639 |
+
# Concatenate image_latents over channels dimension
|
| 640 |
+
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
|
| 641 |
+
|
| 642 |
+
# predict the noise residual
|
| 643 |
+
with torch.no_grad():
|
| 644 |
+
noise_pred_uncond = self.unet(
|
| 645 |
+
latent_model_input[0:1],
|
| 646 |
+
t,
|
| 647 |
+
encoder_hidden_states=image_embeddings[0:1],
|
| 648 |
+
added_time_ids=added_time_ids[0:1],
|
| 649 |
+
return_dict=False,
|
| 650 |
+
)[0]
|
| 651 |
+
|
| 652 |
+
noise_pred_cond = self.unet(
|
| 653 |
+
latent_model_input[1:2],
|
| 654 |
+
t,
|
| 655 |
+
encoder_hidden_states=image_embeddings[1:2],
|
| 656 |
+
added_time_ids=added_time_ids[1:2],
|
| 657 |
+
return_dict=False,
|
| 658 |
+
)[0]
|
| 659 |
+
|
| 660 |
+
with torch.no_grad():
|
| 661 |
+
noise_pred = torch.cat([noise_pred_uncond, noise_pred_cond])
|
| 662 |
+
|
| 663 |
+
# perform guidance
|
| 664 |
+
if self.do_classifier_free_guidance:
|
| 665 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
| 666 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
| 667 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 668 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
with torch.no_grad():
|
| 672 |
+
if callback_on_step_end is not None:
|
| 673 |
+
callback_kwargs = {}
|
| 674 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 675 |
+
callback_kwargs[k] = locals()[k]
|
| 676 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 677 |
+
latents = callback_outputs.pop("latents", latents)
|
| 678 |
+
|
| 679 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 680 |
+
progress_bar.update()
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
with torch.no_grad():
|
| 684 |
+
if not output_type == "latent":
|
| 685 |
+
# cast back to fp16 if needed
|
| 686 |
+
if needs_upcasting:
|
| 687 |
+
self.vae.to(dtype=torch.float16)
|
| 688 |
+
frames = self.decode_latents(latents, num_frames, decode_chunk_size)
|
| 689 |
+
gt = self.decode_latents(original_image_latents[1:2]*self.vae.config.scaling_factor, num_frames, decode_chunk_size)
|
| 690 |
+
else:
|
| 691 |
+
frames = latents
|
| 692 |
+
|
| 693 |
+
self.maybe_free_model_hooks()
|
| 694 |
+
|
| 695 |
+
if not return_dict:
|
| 696 |
+
return frames
|
| 697 |
+
|
| 698 |
+
return StableVideoDiffusionPipelineOutput(frames=frames), gt
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
# resizing utils
|
| 702 |
+
# TODO: clean up later
|
| 703 |
+
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
|
| 704 |
+
h, w = input.shape[-2:]
|
| 705 |
+
factors = (h / size[0], w / size[1])
|
| 706 |
+
|
| 707 |
+
# First, we have to determine sigma
|
| 708 |
+
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
|
| 709 |
+
sigmas = (
|
| 710 |
+
max((factors[0] - 1.0) / 2.0, 0.001),
|
| 711 |
+
max((factors[1] - 1.0) / 2.0, 0.001),
|
| 712 |
+
)
|
| 713 |
+
|
| 714 |
+
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
|
| 715 |
+
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
|
| 716 |
+
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
|
| 717 |
+
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
|
| 718 |
+
|
| 719 |
+
# Make sure it is odd
|
| 720 |
+
if (ks[0] % 2) == 0:
|
| 721 |
+
ks = ks[0] + 1, ks[1]
|
| 722 |
+
|
| 723 |
+
if (ks[1] % 2) == 0:
|
| 724 |
+
ks = ks[0], ks[1] + 1
|
| 725 |
+
|
| 726 |
+
input = _gaussian_blur2d(input, ks, sigmas)
|
| 727 |
+
|
| 728 |
+
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
|
| 729 |
+
return output
|
| 730 |
+
|
| 731 |
+
|
| 732 |
+
def _compute_padding(kernel_size):
|
| 733 |
+
"""Compute padding tuple."""
|
| 734 |
+
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
|
| 735 |
+
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
|
| 736 |
+
if len(kernel_size) < 2:
|
| 737 |
+
raise AssertionError(kernel_size)
|
| 738 |
+
computed = [k - 1 for k in kernel_size]
|
| 739 |
+
|
| 740 |
+
# for even kernels we need to do asymmetric padding :(
|
| 741 |
+
out_padding = 2 * len(kernel_size) * [0]
|
| 742 |
+
|
| 743 |
+
for i in range(len(kernel_size)):
|
| 744 |
+
computed_tmp = computed[-(i + 1)]
|
| 745 |
+
|
| 746 |
+
pad_front = computed_tmp // 2
|
| 747 |
+
pad_rear = computed_tmp - pad_front
|
| 748 |
+
|
| 749 |
+
out_padding[2 * i + 0] = pad_front
|
| 750 |
+
out_padding[2 * i + 1] = pad_rear
|
| 751 |
+
|
| 752 |
+
return out_padding
|
| 753 |
+
|
| 754 |
+
|
| 755 |
+
def _filter2d(input, kernel):
|
| 756 |
+
# prepare kernel
|
| 757 |
+
b, c, h, w = input.shape
|
| 758 |
+
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
|
| 759 |
+
|
| 760 |
+
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
|
| 761 |
+
|
| 762 |
+
height, width = tmp_kernel.shape[-2:]
|
| 763 |
+
|
| 764 |
+
padding_shape: List[int] = _compute_padding([height, width])
|
| 765 |
+
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
|
| 766 |
+
|
| 767 |
+
# kernel and input tensor reshape to align element-wise or batch-wise params
|
| 768 |
+
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
|
| 769 |
+
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
|
| 770 |
+
|
| 771 |
+
# convolve the tensor with the kernel.
|
| 772 |
+
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
|
| 773 |
+
|
| 774 |
+
out = output.view(b, c, h, w)
|
| 775 |
+
return out
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
def _gaussian(window_size: int, sigma):
|
| 779 |
+
if isinstance(sigma, float):
|
| 780 |
+
sigma = torch.tensor([[sigma]])
|
| 781 |
+
|
| 782 |
+
batch_size = sigma.shape[0]
|
| 783 |
+
|
| 784 |
+
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
|
| 785 |
+
|
| 786 |
+
if window_size % 2 == 0:
|
| 787 |
+
x = x + 0.5
|
| 788 |
+
|
| 789 |
+
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
|
| 790 |
+
|
| 791 |
+
return gauss / gauss.sum(-1, keepdim=True)
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
def _gaussian_blur2d(input, kernel_size, sigma):
|
| 795 |
+
if isinstance(sigma, tuple):
|
| 796 |
+
sigma = torch.tensor([sigma], dtype=input.dtype)
|
| 797 |
+
else:
|
| 798 |
+
sigma = sigma.to(dtype=input.dtype)
|
| 799 |
+
|
| 800 |
+
ky, kx = int(kernel_size[0]), int(kernel_size[1])
|
| 801 |
+
bs = sigma.shape[0]
|
| 802 |
+
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
|
| 803 |
+
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
|
| 804 |
+
out_x = _filter2d(input, kernel_x[..., None, :])
|
| 805 |
+
out = _filter2d(out_x, kernel_y[..., None])
|
| 806 |
+
|
| 807 |
+
return out
|
simplified_validation.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from simplified_pipeline import StableVideoDiffusionPipeline
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import videoio
|
| 6 |
+
import matplotlib.image
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def valid_net(args, batch, unet, image_encoder, vae, global_step, weight_dtype, device):
|
| 12 |
+
|
| 13 |
+
# The models need unwrapping because for compatibility in distributed training mode.
|
| 14 |
+
|
| 15 |
+
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
| 16 |
+
args.pretrained_model_path,
|
| 17 |
+
unet=unet,
|
| 18 |
+
image_encoder=image_encoder,
|
| 19 |
+
vae=vae,
|
| 20 |
+
torch_dtype=weight_dtype,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
pipeline.set_progress_bar_config(disable=True)
|
| 24 |
+
|
| 25 |
+
# run inference
|
| 26 |
+
val_save_dir = os.path.join(
|
| 27 |
+
args.output_dir, "validation_images")
|
| 28 |
+
|
| 29 |
+
print("Validation images will be saved to ", val_save_dir)
|
| 30 |
+
|
| 31 |
+
os.makedirs(val_save_dir, exist_ok=True)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
num_frames = 9
|
| 35 |
+
unet.eval()
|
| 36 |
+
|
| 37 |
+
#clear gradients (the torch no grad is the magic that makes this work)
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
torch.cuda.empty_cache()
|
| 40 |
+
|
| 41 |
+
pixel_values = batch["pixel_values"].to(device)
|
| 42 |
+
original_pixel_values = batch['original_pixel_values'].to(device)
|
| 43 |
+
focal_stack_num = batch["focal_stack_num"]
|
| 44 |
+
|
| 45 |
+
svd_output, gt_frames = pipeline(
|
| 46 |
+
pixel_values,
|
| 47 |
+
height=pixel_values.shape[3],
|
| 48 |
+
width=pixel_values.shape[4],
|
| 49 |
+
num_frames=num_frames,
|
| 50 |
+
decode_chunk_size=8,
|
| 51 |
+
motion_bucket_id=0,
|
| 52 |
+
min_guidance_scale=1.5,
|
| 53 |
+
max_guidance_scale=1.5,
|
| 54 |
+
fps=7,
|
| 55 |
+
noise_aug_strength=0,
|
| 56 |
+
focal_stack_num = focal_stack_num,
|
| 57 |
+
num_inference_steps=args.num_inference_steps,
|
| 58 |
+
)
|
| 59 |
+
video_frames = svd_output.frames[0]
|
| 60 |
+
gt_frames = gt_frames[0]
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
|
| 65 |
+
if len(original_pixel_values.shape) == 5:
|
| 66 |
+
pixel_values = original_pixel_values[0] #assuming batch size is 1
|
| 67 |
+
else:
|
| 68 |
+
pixel_values = original_pixel_values.repeat(num_frames, 1, 1, 1)
|
| 69 |
+
pixel_values_normalized = pixel_values*0.5 + 0.5
|
| 70 |
+
pixel_values_normalized = torch.clamp(pixel_values_normalized,0,1)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
video_frames_normalized = video_frames*0.5 + 0.5
|
| 76 |
+
video_frames_normalized = torch.clamp(video_frames_normalized,0,1)
|
| 77 |
+
video_frames_normalized = video_frames_normalized.permute(1,0,2,3)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
gt_frames = torch.clamp(gt_frames,0,1)
|
| 81 |
+
gt_frames = gt_frames.permute(1,0,2,3)
|
| 82 |
+
|
| 83 |
+
#RESIZE images
|
| 84 |
+
video_frames_normalized = torch.nn.functional.interpolate(video_frames_normalized, ((pixel_values.shape[2]//2)*2, (pixel_values.shape[3]//2)*2), mode='bilinear')
|
| 85 |
+
gt_frames = torch.nn.functional.interpolate(gt_frames, ((pixel_values.shape[2]//2)*2, (pixel_values.shape[3]//2)*2), mode='bilinear')
|
| 86 |
+
pixel_values_normalized = torch.nn.functional.interpolate(pixel_values_normalized, ((pixel_values.shape[2]//2)*2, (pixel_values.shape[3]//2)*2), mode='bilinear')
|
| 87 |
+
|
| 88 |
+
os.makedirs(os.path.join(val_save_dir, f"position_{focal_stack_num}/videos"), exist_ok=True)
|
| 89 |
+
videoio.videosave(os.path.join(
|
| 90 |
+
val_save_dir,
|
| 91 |
+
f"position_{focal_stack_num}/videos/{batch['name']}.mp4",
|
| 92 |
+
), video_frames_normalized.permute(0,2,3,1).cpu().numpy(), fps=5)
|
| 93 |
+
|
| 94 |
+
#save images
|
| 95 |
+
os.makedirs(os.path.join(val_save_dir, f"position_{focal_stack_num}/images"), exist_ok=True)
|
| 96 |
+
for i in range(num_frames):
|
| 97 |
+
#use Pillow to save images
|
| 98 |
+
img = Image.fromarray((video_frames_normalized[i].permute(1,2,0).cpu().numpy()*255).astype(np.uint8))
|
| 99 |
+
#use index to assign icc profile to img
|
| 100 |
+
if batch['icc_profile'] != "none":
|
| 101 |
+
img.info['icc_profile'] = batch['icc_profile']
|
| 102 |
+
path = os.path.join(val_save_dir, f"position_{focal_stack_num}/images/{batch['name']}_frame_{i}.png")
|
| 103 |
+
print("Saving image to ", path)
|
| 104 |
+
img.save(os.path.join(val_save_dir, f"position_{focal_stack_num}/images/{batch['name']}_frame_{i}.png"))
|
| 105 |
+
del video_frames
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
splits/test_scenes.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b7d6ac77b97cf4b5fa62ffa13df88fc6dec2dfe4d5fbc981b79373c4766b86a
|
| 3 |
+
size 4936
|
splits/train_scenes.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ec9f60c6cee001b10f0f0928f24d4fafc54ec6c3d9ed1e34069b3c0da0e8e570
|
| 3 |
+
size 44238
|
training/configs/accelerator_config.yaml
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
compute_environment: LOCAL_MACHINE
|
| 2 |
+
main_process_port: 29501
|
| 3 |
+
debug: false
|
| 4 |
+
deepspeed_config:
|
| 5 |
+
gradient_accumulation_steps: 1
|
| 6 |
+
gradient_clipping: 1.0
|
| 7 |
+
offload_optimizer_device: none
|
| 8 |
+
offload_param_device: none
|
| 9 |
+
zero3_init_flag: false
|
| 10 |
+
zero_stage: 2
|
| 11 |
+
distributed_type: DEEPSPEED
|
| 12 |
+
downcast_bf16: 'no'
|
| 13 |
+
enable_cpu_affinity: false
|
| 14 |
+
machine_rank: 0
|
| 15 |
+
main_training_function: main
|
| 16 |
+
dynamo_backend: 'no'
|
| 17 |
+
mixed_precision: 'no'
|
| 18 |
+
num_machines: 1
|
| 19 |
+
num_processes: 4
|
| 20 |
+
rdzv_backend: static
|
| 21 |
+
same_network: true
|
| 22 |
+
tpu_env: []
|
| 23 |
+
tpu_use_cluster: false
|
| 24 |
+
tpu_use_sudo: false
|
| 25 |
+
use_cpu: false
|
training/configs/focal_stacks_test.yaml
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data_folder: "/datasets/sai/scenes_merged"
|
| 2 |
+
splits_dir: "./splits" #all split.pkl files are stored here
|
| 3 |
+
pretrained_model_name_or_path: "./svdh"
|
| 4 |
+
load_from_checkpoint: "./checkpoints/checkpoint-200000"
|
| 5 |
+
output_dir: "./outputs/focal_stacks_test"
|
| 6 |
+
wandb_project: "RefocusingSVD"
|
| 7 |
+
run_name: "focal_stacks_test"
|
| 8 |
+
test: true
|
| 9 |
+
revision: null
|
| 10 |
+
num_frames: 9
|
| 11 |
+
num_validation_images: 1
|
| 12 |
+
validation_steps: 1000
|
| 13 |
+
photos: false
|
| 14 |
+
conditioning: "random"
|
| 15 |
+
seed: 0
|
| 16 |
+
per_gpu_batch_size: 1
|
| 17 |
+
num_train_epochs: 600
|
| 18 |
+
max_train_steps: null
|
| 19 |
+
gradient_accumulation_steps: 1
|
| 20 |
+
gradient_checkpointing: false
|
| 21 |
+
learning_rate: 0.00001
|
| 22 |
+
reconstruction_guidance: 0
|
| 23 |
+
scale_lr: true
|
| 24 |
+
lr_scheduler: "constant"
|
| 25 |
+
lr_warmup_steps: 0
|
| 26 |
+
conditioning_dropout_prob: 0.1
|
| 27 |
+
use_8bit_adam: false
|
| 28 |
+
allow_tf32: false
|
| 29 |
+
use_ema: false
|
| 30 |
+
non_ema_revision: null
|
| 31 |
+
num_workers: 32
|
| 32 |
+
adam_beta1: 0.9
|
| 33 |
+
adam_beta2: 0.999
|
| 34 |
+
adam_weight_decay: 0.01
|
| 35 |
+
adam_epsilon: 0.0000001
|
| 36 |
+
max_grad_norm: 1.0
|
| 37 |
+
push_to_hub: false
|
| 38 |
+
hub_token: null
|
| 39 |
+
hub_model_id: null
|
| 40 |
+
logging_dir: "logs"
|
| 41 |
+
mixed_precision: null
|
| 42 |
+
report_to: "wandb"
|
| 43 |
+
local_rank: -1
|
| 44 |
+
checkpointing_steps: 500
|
| 45 |
+
checkpoints_total_limit: 2
|
| 46 |
+
enable_xformers_memory_efficient_attention: false
|
| 47 |
+
pretrain_unet: null
|
training/configs/focal_stacks_train.yaml
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data_folder: "/datasets/sai/scenes_merged"
|
| 2 |
+
splits_dir: "./splits" #all split.pkl files are stored here
|
| 3 |
+
pretrained_model_name_or_path: "./svdh"
|
| 4 |
+
load_from_checkpoint: null
|
| 5 |
+
output_dir: "./outputs/focal_stacks_train"
|
| 6 |
+
wandb_project: "RefocusingSVD"
|
| 7 |
+
run_name: "focal_stacks_train"
|
| 8 |
+
test: false
|
| 9 |
+
revision: null
|
| 10 |
+
num_frames: 9
|
| 11 |
+
num_validation_images: 1
|
| 12 |
+
validation_steps: 1000
|
| 13 |
+
photos: false
|
| 14 |
+
conditioning: "random"
|
| 15 |
+
seed: 0
|
| 16 |
+
per_gpu_batch_size: 1
|
| 17 |
+
num_train_epochs: 600
|
| 18 |
+
max_train_steps: null
|
| 19 |
+
gradient_accumulation_steps: 1
|
| 20 |
+
gradient_checkpointing: false
|
| 21 |
+
learning_rate: 0.00001
|
| 22 |
+
reconstruction_guidance: 0
|
| 23 |
+
scale_lr: true
|
| 24 |
+
lr_scheduler: "constant"
|
| 25 |
+
lr_warmup_steps: 0
|
| 26 |
+
conditioning_dropout_prob: 0.1
|
| 27 |
+
use_8bit_adam: false
|
| 28 |
+
allow_tf32: false
|
| 29 |
+
use_ema: false
|
| 30 |
+
non_ema_revision: null
|
| 31 |
+
num_workers: 32
|
| 32 |
+
adam_beta1: 0.9
|
| 33 |
+
adam_beta2: 0.999
|
| 34 |
+
adam_weight_decay: 0.01
|
| 35 |
+
adam_epsilon: 0.0000001
|
| 36 |
+
max_grad_norm: 1.0
|
| 37 |
+
push_to_hub: false
|
| 38 |
+
hub_token: null
|
| 39 |
+
hub_model_id: null
|
| 40 |
+
logging_dir: "logs"
|
| 41 |
+
mixed_precision: null
|
| 42 |
+
report_to: "wandb"
|
| 43 |
+
local_rank: -1
|
| 44 |
+
checkpointing_steps: 500
|
| 45 |
+
checkpoints_total_limit: 2
|
| 46 |
+
enable_xformers_memory_efficient_attention: false
|
| 47 |
+
pretrain_unet: null
|
training/configs/outside_photos.yaml
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
photos: true # Use outside photos
|
| 2 |
+
data_folder: "./photos"
|
| 3 |
+
pretrained_model_name_or_path: "./svdh"
|
| 4 |
+
load_from_checkpoint: "./checkpoints/checkpoint-200000"
|
| 5 |
+
output_dir: "./outputs/outside_photos"
|
| 6 |
+
wandb_project: "RefocusingSVD"
|
| 7 |
+
run_name: "outside_photos"
|
| 8 |
+
test: true
|
| 9 |
+
revision: null
|
| 10 |
+
num_frames: 9
|
| 11 |
+
num_validation_images: 1
|
| 12 |
+
validation_steps: 1000
|
| 13 |
+
conditioning: "random"
|
| 14 |
+
seed: 0
|
| 15 |
+
per_gpu_batch_size: 1
|
| 16 |
+
num_train_epochs: 600
|
| 17 |
+
max_train_steps: null
|
| 18 |
+
gradient_accumulation_steps: 1
|
| 19 |
+
gradient_checkpointing: false
|
| 20 |
+
learning_rate: 0.00001
|
| 21 |
+
reconstruction_guidance: 0
|
| 22 |
+
scale_lr: true
|
| 23 |
+
lr_scheduler: "constant"
|
| 24 |
+
lr_warmup_steps: 0
|
| 25 |
+
conditioning_dropout_prob: 0.1
|
| 26 |
+
use_8bit_adam: false
|
| 27 |
+
allow_tf32: false
|
| 28 |
+
use_ema: false
|
| 29 |
+
non_ema_revision: null
|
| 30 |
+
num_workers: 32
|
| 31 |
+
adam_beta1: 0.9
|
| 32 |
+
adam_beta2: 0.999
|
| 33 |
+
adam_weight_decay: 0.01
|
| 34 |
+
adam_epsilon: 0.0000001
|
| 35 |
+
max_grad_norm: 1.0
|
| 36 |
+
push_to_hub: false
|
| 37 |
+
hub_token: null
|
| 38 |
+
hub_model_id: null
|
| 39 |
+
logging_dir: "logs"
|
| 40 |
+
mixed_precision: null
|
| 41 |
+
report_to: "wandb"
|
| 42 |
+
local_rank: -1
|
| 43 |
+
checkpointing_steps: 500
|
| 44 |
+
checkpoints_total_limit: 2
|
| 45 |
+
enable_xformers_memory_efficient_attention: false
|
| 46 |
+
pretrain_unet: null
|
training/svd_pipeline.py
ADDED
|
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
import random
|
| 18 |
+
from typing import Callable, Dict, List, Optional, Union
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
import PIL.Image
|
| 22 |
+
import torch
|
| 23 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
| 24 |
+
|
| 25 |
+
from diffusers.image_processor import PipelineImageInput
|
| 26 |
+
from diffusers.models import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel
|
| 27 |
+
from diffusers.schedulers import EulerDiscreteScheduler
|
| 28 |
+
from diffusers.utils import BaseOutput, logging, replace_example_docstring
|
| 29 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
| 30 |
+
from diffusers.video_processor import VideoProcessor
|
| 31 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 32 |
+
import torch.nn.functional as F
|
| 33 |
+
from tqdm import tqdm
|
| 34 |
+
from utils import tensor_to_vae_latent
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 38 |
+
|
| 39 |
+
EXAMPLE_DOC_STRING = """
|
| 40 |
+
Examples:
|
| 41 |
+
```py
|
| 42 |
+
>>> from diffusers import StableVideoDiffusionPipeline
|
| 43 |
+
>>> from diffusers.utils import load_image, export_to_video
|
| 44 |
+
|
| 45 |
+
>>> pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 46 |
+
... "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
| 47 |
+
... )
|
| 48 |
+
>>> pipe.to("cuda")
|
| 49 |
+
|
| 50 |
+
>>> image = load_image(
|
| 51 |
+
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd-docstring-example.jpeg"
|
| 52 |
+
... )
|
| 53 |
+
>>> image = image.resize((1024, 576))
|
| 54 |
+
|
| 55 |
+
>>> frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0]
|
| 56 |
+
>>> export_to_video(frames, "generated.mp4", fps=7)
|
| 57 |
+
```
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def _append_dims(x, target_dims):
|
| 62 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
| 63 |
+
dims_to_append = target_dims - x.ndim
|
| 64 |
+
if dims_to_append < 0:
|
| 65 |
+
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
|
| 66 |
+
return x[(...,) + (None,) * dims_to_append]
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 70 |
+
def retrieve_timesteps(
|
| 71 |
+
scheduler,
|
| 72 |
+
num_inference_steps: Optional[int] = None,
|
| 73 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 74 |
+
timesteps: Optional[List[int]] = None,
|
| 75 |
+
sigmas: Optional[List[float]] = None,
|
| 76 |
+
**kwargs,
|
| 77 |
+
):
|
| 78 |
+
r"""
|
| 79 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 80 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
scheduler (`SchedulerMixin`):
|
| 84 |
+
The scheduler to get timesteps from.
|
| 85 |
+
num_inference_steps (`int`):
|
| 86 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 87 |
+
must be `None`.
|
| 88 |
+
device (`str` or `torch.device`, *optional*):
|
| 89 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 90 |
+
timesteps (`List[int]`, *optional*):
|
| 91 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 92 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 93 |
+
sigmas (`List[float]`, *optional*):
|
| 94 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 95 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 99 |
+
second element is the number of inference steps.
|
| 100 |
+
"""
|
| 101 |
+
if timesteps is not None and sigmas is not None:
|
| 102 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 103 |
+
if timesteps is not None:
|
| 104 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 105 |
+
if not accepts_timesteps:
|
| 106 |
+
raise ValueError(
|
| 107 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 108 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 109 |
+
)
|
| 110 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 111 |
+
timesteps = scheduler.timesteps
|
| 112 |
+
num_inference_steps = len(timesteps)
|
| 113 |
+
elif sigmas is not None:
|
| 114 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 115 |
+
if not accept_sigmas:
|
| 116 |
+
raise ValueError(
|
| 117 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 118 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 119 |
+
)
|
| 120 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 121 |
+
timesteps = scheduler.timesteps
|
| 122 |
+
num_inference_steps = len(timesteps)
|
| 123 |
+
else:
|
| 124 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 125 |
+
timesteps = scheduler.timesteps
|
| 126 |
+
return timesteps, num_inference_steps
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
@dataclass
|
| 130 |
+
class StableVideoDiffusionPipelineOutput(BaseOutput):
|
| 131 |
+
r"""
|
| 132 |
+
Output class for Stable Video Diffusion pipeline.
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
frames (`[List[List[PIL.Image.Image]]`, `np.ndarray`, `torch.Tensor`]):
|
| 136 |
+
List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size,
|
| 137 |
+
num_frames, height, width, num_channels)`.
|
| 138 |
+
"""
|
| 139 |
+
|
| 140 |
+
frames: Union[List[List[PIL.Image.Image]], np.ndarray, torch.Tensor]
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class StableVideoDiffusionPipeline(DiffusionPipeline):
|
| 144 |
+
r"""
|
| 145 |
+
Pipeline to generate video from an input image using Stable Video Diffusion.
|
| 146 |
+
|
| 147 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
| 148 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
vae ([`AutoencoderKLTemporalDecoder`]):
|
| 152 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
| 153 |
+
image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
|
| 154 |
+
Frozen CLIP image-encoder
|
| 155 |
+
([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)).
|
| 156 |
+
unet ([`UNetSpatioTemporalConditionModel`]):
|
| 157 |
+
A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents.
|
| 158 |
+
scheduler ([`EulerDiscreteScheduler`]):
|
| 159 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
| 160 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
| 161 |
+
A `CLIPImageProcessor` to extract features from generated images.
|
| 162 |
+
"""
|
| 163 |
+
|
| 164 |
+
model_cpu_offload_seq = "image_encoder->unet->vae"
|
| 165 |
+
_callback_tensor_inputs = ["latents"]
|
| 166 |
+
|
| 167 |
+
def __init__(
|
| 168 |
+
self,
|
| 169 |
+
vae: AutoencoderKLTemporalDecoder,
|
| 170 |
+
image_encoder: CLIPVisionModelWithProjection,
|
| 171 |
+
unet: UNetSpatioTemporalConditionModel,
|
| 172 |
+
scheduler: EulerDiscreteScheduler,
|
| 173 |
+
feature_extractor: CLIPImageProcessor,
|
| 174 |
+
):
|
| 175 |
+
super().__init__()
|
| 176 |
+
|
| 177 |
+
self.register_modules(
|
| 178 |
+
vae=vae,
|
| 179 |
+
image_encoder=image_encoder,
|
| 180 |
+
unet=unet,
|
| 181 |
+
scheduler=scheduler,
|
| 182 |
+
feature_extractor=feature_extractor,
|
| 183 |
+
)
|
| 184 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 185 |
+
self.video_processor = VideoProcessor(do_resize=True, vae_scale_factor=self.vae_scale_factor)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def _encode_image(
|
| 190 |
+
self,
|
| 191 |
+
image: PipelineImageInput,
|
| 192 |
+
device: Union[str, torch.device],
|
| 193 |
+
num_videos_per_prompt: int,
|
| 194 |
+
do_classifier_free_guidance: bool,
|
| 195 |
+
) -> torch.Tensor:
|
| 196 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 197 |
+
|
| 198 |
+
if not isinstance(image, torch.Tensor):
|
| 199 |
+
image = self.video_processor.pil_to_numpy(image)
|
| 200 |
+
image = self.video_processor.numpy_to_pt(image)
|
| 201 |
+
|
| 202 |
+
# We normalize the image before resizing to match with the original implementation.
|
| 203 |
+
# Then we unnormalize it after resizing.
|
| 204 |
+
image = image * 2.0 - 1.0
|
| 205 |
+
image = _resize_with_antialiasing(image, (224, 224))
|
| 206 |
+
image = (image + 1.0) / 2.0
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
# Normalize the image with for CLIP input
|
| 210 |
+
image = self.feature_extractor(
|
| 211 |
+
images=image,
|
| 212 |
+
do_normalize=True,
|
| 213 |
+
do_center_crop=False,
|
| 214 |
+
do_resize=False,
|
| 215 |
+
do_rescale=False,
|
| 216 |
+
return_tensors="pt",
|
| 217 |
+
).pixel_values
|
| 218 |
+
|
| 219 |
+
image = image.to(device=device, dtype=dtype)
|
| 220 |
+
image_embeddings = self.image_encoder(image).image_embeds
|
| 221 |
+
image_embeddings = image_embeddings.unsqueeze(1)
|
| 222 |
+
|
| 223 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
| 224 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
| 225 |
+
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
|
| 226 |
+
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
| 227 |
+
|
| 228 |
+
if do_classifier_free_guidance:
|
| 229 |
+
negative_image_embeddings = torch.zeros_like(image_embeddings)
|
| 230 |
+
|
| 231 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 232 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 233 |
+
# to avoid doing two forward passes
|
| 234 |
+
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
|
| 235 |
+
|
| 236 |
+
return image_embeddings
|
| 237 |
+
|
| 238 |
+
def _encode_vae_image(
|
| 239 |
+
self,
|
| 240 |
+
image: torch.Tensor,
|
| 241 |
+
device: Union[str, torch.device],
|
| 242 |
+
num_videos_per_prompt: int,
|
| 243 |
+
do_classifier_free_guidance: bool,
|
| 244 |
+
):
|
| 245 |
+
image = image.to(device=device)
|
| 246 |
+
image_latents = self.vae.encode(image).latent_dist.mode()
|
| 247 |
+
|
| 248 |
+
# duplicate image_latents for each generation per prompt, using mps friendly method
|
| 249 |
+
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1)
|
| 250 |
+
|
| 251 |
+
if do_classifier_free_guidance:
|
| 252 |
+
negative_image_latents = torch.zeros_like(image_latents)
|
| 253 |
+
|
| 254 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 255 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 256 |
+
# to avoid doing two forward passes
|
| 257 |
+
image_latents = torch.cat([negative_image_latents, image_latents])
|
| 258 |
+
|
| 259 |
+
return image_latents
|
| 260 |
+
|
| 261 |
+
def _get_add_time_ids(
|
| 262 |
+
self,
|
| 263 |
+
fps: int,
|
| 264 |
+
motion_bucket_id: int,
|
| 265 |
+
noise_aug_strength: float,
|
| 266 |
+
dtype: torch.dtype,
|
| 267 |
+
batch_size: int,
|
| 268 |
+
num_videos_per_prompt: int,
|
| 269 |
+
do_classifier_free_guidance: bool,
|
| 270 |
+
):
|
| 271 |
+
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
|
| 272 |
+
|
| 273 |
+
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids)
|
| 274 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
| 275 |
+
|
| 276 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
| 277 |
+
raise ValueError(
|
| 278 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 282 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)
|
| 283 |
+
|
| 284 |
+
if do_classifier_free_guidance:
|
| 285 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids])
|
| 286 |
+
|
| 287 |
+
return add_time_ids
|
| 288 |
+
|
| 289 |
+
def decode_latents(self, latents: torch.Tensor, num_frames: int, decode_chunk_size: int = 14):
|
| 290 |
+
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
|
| 291 |
+
latents = latents.flatten(0, 1)
|
| 292 |
+
|
| 293 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
| 294 |
+
|
| 295 |
+
forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
|
| 296 |
+
accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
|
| 297 |
+
|
| 298 |
+
# decode decode_chunk_size frames at a time to avoid OOM
|
| 299 |
+
frames = []
|
| 300 |
+
for i in range(0, latents.shape[0], decode_chunk_size):
|
| 301 |
+
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
|
| 302 |
+
decode_kwargs = {}
|
| 303 |
+
if accepts_num_frames:
|
| 304 |
+
# we only pass num_frames_in if it's expected
|
| 305 |
+
decode_kwargs["num_frames"] = num_frames_in
|
| 306 |
+
|
| 307 |
+
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
|
| 308 |
+
frames.append(frame)
|
| 309 |
+
frames = torch.cat(frames, dim=0)
|
| 310 |
+
|
| 311 |
+
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
|
| 312 |
+
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
|
| 313 |
+
|
| 314 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
| 315 |
+
frames = frames.float()
|
| 316 |
+
return frames
|
| 317 |
+
|
| 318 |
+
def check_inputs(self, image, height, width):
|
| 319 |
+
if (
|
| 320 |
+
not isinstance(image, torch.Tensor)
|
| 321 |
+
and not isinstance(image, PIL.Image.Image)
|
| 322 |
+
and not isinstance(image, list)
|
| 323 |
+
):
|
| 324 |
+
raise ValueError(
|
| 325 |
+
"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
| 326 |
+
f" {type(image)}"
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 330 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 331 |
+
|
| 332 |
+
def prepare_latents(
|
| 333 |
+
self,
|
| 334 |
+
batch_size: int,
|
| 335 |
+
num_frames: int,
|
| 336 |
+
num_channels_latents: int,
|
| 337 |
+
height: int,
|
| 338 |
+
width: int,
|
| 339 |
+
dtype: torch.dtype,
|
| 340 |
+
device: Union[str, torch.device],
|
| 341 |
+
generator: torch.Generator,
|
| 342 |
+
latents: Optional[torch.Tensor] = None,
|
| 343 |
+
):
|
| 344 |
+
shape = (
|
| 345 |
+
batch_size,
|
| 346 |
+
num_frames,
|
| 347 |
+
num_channels_latents // 2,
|
| 348 |
+
height // self.vae_scale_factor,
|
| 349 |
+
width // self.vae_scale_factor,
|
| 350 |
+
)
|
| 351 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 352 |
+
raise ValueError(
|
| 353 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 354 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
if latents is None:
|
| 358 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 359 |
+
else:
|
| 360 |
+
latents = latents.to(device)
|
| 361 |
+
|
| 362 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 363 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 364 |
+
return latents
|
| 365 |
+
|
| 366 |
+
@property
|
| 367 |
+
def guidance_scale(self):
|
| 368 |
+
return self._guidance_scale
|
| 369 |
+
|
| 370 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 371 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 372 |
+
# corresponds to doing no classifier free guidance.
|
| 373 |
+
@property
|
| 374 |
+
def do_classifier_free_guidance(self):
|
| 375 |
+
if isinstance(self.guidance_scale, (int, float)):
|
| 376 |
+
return self.guidance_scale > 0
|
| 377 |
+
return self.guidance_scale.max() > 0
|
| 378 |
+
|
| 379 |
+
@property
|
| 380 |
+
def num_timesteps(self):
|
| 381 |
+
return self._num_timesteps
|
| 382 |
+
|
| 383 |
+
#@torch.no_grad()
|
| 384 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 385 |
+
def __call__(
|
| 386 |
+
self,
|
| 387 |
+
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor],
|
| 388 |
+
height: int = 576,
|
| 389 |
+
width: int = 1024,
|
| 390 |
+
num_frames: Optional[int] = None,
|
| 391 |
+
num_inference_steps: int = 25,
|
| 392 |
+
sigmas: Optional[List[float]] = None,
|
| 393 |
+
min_guidance_scale: float = 1.0,
|
| 394 |
+
max_guidance_scale: float = 3.0,
|
| 395 |
+
reconstruction_guidance_scale: float = 2.0,
|
| 396 |
+
fps: int = 7,
|
| 397 |
+
motion_bucket_id: int = 127,
|
| 398 |
+
noise_aug_strength: float = 0.02,
|
| 399 |
+
decode_chunk_size: Optional[int] = None,
|
| 400 |
+
num_videos_per_prompt: Optional[int] = 1,
|
| 401 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 402 |
+
latents: Optional[torch.Tensor] = None,
|
| 403 |
+
output_type: Optional[str] = "pil",
|
| 404 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 405 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 406 |
+
return_dict: bool = True,
|
| 407 |
+
conditioning: str = "zero",
|
| 408 |
+
focal_stack_num: int = None,
|
| 409 |
+
accelerator=None,
|
| 410 |
+
weight_dtype=None,
|
| 411 |
+
zero=0
|
| 412 |
+
):
|
| 413 |
+
r"""
|
| 414 |
+
The call function to the pipeline for generation.
|
| 415 |
+
|
| 416 |
+
Args:
|
| 417 |
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`):
|
| 418 |
+
Image(s) to guide image generation. If you provide a tensor, the expected value range is between `[0,
|
| 419 |
+
1]`.
|
| 420 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 421 |
+
The height in pixels of the generated image.
|
| 422 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 423 |
+
The width in pixels of the generated image.
|
| 424 |
+
num_frames (`int`, *optional*):
|
| 425 |
+
The number of video frames to generate. Defaults to `self.unet.config.num_frames` (14 for
|
| 426 |
+
`stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`).
|
| 427 |
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
| 428 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality video at the
|
| 429 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
| 430 |
+
sigmas (`List[float]`, *optional*):
|
| 431 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 432 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 433 |
+
will be used.
|
| 434 |
+
min_guidance_scale (`float`, *optional*, defaults to 1.0):
|
| 435 |
+
The minimum guidance scale. Used for the classifier free guidance with first frame.
|
| 436 |
+
max_guidance_scale (`float`, *optional*, defaults to 3.0):
|
| 437 |
+
The maximum guidance scale. Used for the classifier free guidance with last frame.
|
| 438 |
+
fps (`int`, *optional*, defaults to 7):
|
| 439 |
+
Frames per second. The rate at which the generated images shall be exported to a video after
|
| 440 |
+
generation. Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
|
| 441 |
+
motion_bucket_id (`int`, *optional*, defaults to 127):
|
| 442 |
+
Used for conditioning the amount of motion for the generation. The higher the number the more motion
|
| 443 |
+
will be in the video.
|
| 444 |
+
noise_aug_strength (`float`, *optional*, defaults to 0.02):
|
| 445 |
+
The amount of noise added to the init image, the higher it is the less the video will look like the
|
| 446 |
+
init image. Increase it for more motion.
|
| 447 |
+
decode_chunk_size (`int`, *optional*):
|
| 448 |
+
The number of frames to decode at a time. Higher chunk size leads to better temporal consistency at the
|
| 449 |
+
expense of more memory usage. By default, the decoder decodes all frames at once for maximal quality.
|
| 450 |
+
For lower memory usage, reduce `decode_chunk_size`.
|
| 451 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
| 452 |
+
The number of videos to generate per prompt.
|
| 453 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 454 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 455 |
+
generation deterministic.
|
| 456 |
+
latents (`torch.Tensor`, *optional*):
|
| 457 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
|
| 458 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 459 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 460 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 461 |
+
The output format of the generated image. Choose between `pil`, `np` or `pt`.
|
| 462 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 463 |
+
A function that is called at the end of each denoising step during inference. The function is called
|
| 464 |
+
with the following arguments:
|
| 465 |
+
`callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`.
|
| 466 |
+
`callback_kwargs` will include a list of all tensors as specified by
|
| 467 |
+
`callback_on_step_end_tensor_inputs`.
|
| 468 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 469 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 470 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 471 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 472 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 473 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 474 |
+
plain tuple.
|
| 475 |
+
|
| 476 |
+
Examples:
|
| 477 |
+
|
| 478 |
+
Returns:
|
| 479 |
+
[`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:
|
| 480 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is
|
| 481 |
+
returned, otherwise a `tuple` of (`List[List[PIL.Image.Image]]` or `np.ndarray` or `torch.Tensor`) is
|
| 482 |
+
returned.
|
| 483 |
+
"""
|
| 484 |
+
|
| 485 |
+
with torch.no_grad():
|
| 486 |
+
|
| 487 |
+
# 0. Default height and width to unet
|
| 488 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 489 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 490 |
+
|
| 491 |
+
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
|
| 492 |
+
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
|
| 493 |
+
|
| 494 |
+
# 1. Check inputs. Raise error if not correct
|
| 495 |
+
self.check_inputs(image, height, width)
|
| 496 |
+
|
| 497 |
+
# 2. Define call parameters
|
| 498 |
+
if isinstance(image, PIL.Image.Image):
|
| 499 |
+
batch_size = 1
|
| 500 |
+
elif isinstance(image, list):
|
| 501 |
+
batch_size = len(image)
|
| 502 |
+
else:
|
| 503 |
+
batch_size = image.shape[0]
|
| 504 |
+
device = self._execution_device
|
| 505 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 506 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 507 |
+
# corresponds to doing no classifier free guidance.
|
| 508 |
+
self._guidance_scale = max_guidance_scale
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
# NOTE: Stable Video Diffusion was conditioned on fps - 1, which is why it is reduced here.
|
| 513 |
+
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
|
| 514 |
+
fps = fps - 1
|
| 515 |
+
|
| 516 |
+
# 4. Encode input image using VAE
|
| 517 |
+
# first_image = image[0, 0:1]
|
| 518 |
+
# first_image = self.video_processor.preprocess(first_image*0.5+0.5, height=height, width=width).to(device)
|
| 519 |
+
# noise = randn_tensor(first_image.shape, generator=generator, device=device, dtype=image.dtype)
|
| 520 |
+
# first_image = first_image + noise_aug_strength * noise #you add this noise to have a version of the image that the vae can denoise
|
| 521 |
+
|
| 522 |
+
# first_image = self.video_processor.preprocess(first_image*0.5+0.5, height=height, width=width).to(device)
|
| 523 |
+
|
| 524 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 525 |
+
if needs_upcasting:
|
| 526 |
+
self.vae.to(dtype=torch.float32)
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
image_latents = tensor_to_vae_latent(image, self.vae, otype="mode")/self.vae.config.scaling_factor
|
| 530 |
+
#noise = randn_tensor(image_latents.shape, generator=generator, device=device, dtype=image.dtype)
|
| 531 |
+
#image_latents = image_latents + noise_aug_strength * noise #you add this noise to have a version of the image that the vae can denoise
|
| 532 |
+
|
| 533 |
+
# old_image_latents = self._encode_vae_image(
|
| 534 |
+
# first_image,
|
| 535 |
+
# device=device,
|
| 536 |
+
# num_videos_per_prompt=num_videos_per_prompt,
|
| 537 |
+
# do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 538 |
+
# )
|
| 539 |
+
|
| 540 |
+
if self.do_classifier_free_guidance:
|
| 541 |
+
negative_image_latents = torch.zeros_like(image_latents)
|
| 542 |
+
|
| 543 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 544 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 545 |
+
# to avoid doing two forward passes
|
| 546 |
+
image_latents = torch.cat([negative_image_latents, image_latents])
|
| 547 |
+
|
| 548 |
+
image_latents = image_latents.to(torch.float32)
|
| 549 |
+
|
| 550 |
+
# cast back to fp16 if needed
|
| 551 |
+
if needs_upcasting:
|
| 552 |
+
self.vae.to(dtype=torch.float16)
|
| 553 |
+
|
| 554 |
+
# Repeat the image latents for each frame so we can concatenate them with the noise
|
| 555 |
+
# image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
|
| 556 |
+
#image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)
|
| 557 |
+
mask = torch.zeros_like(image_latents)
|
| 558 |
+
|
| 559 |
+
if focal_stack_num is not None:
|
| 560 |
+
frame_idx = focal_stack_num
|
| 561 |
+
mask[:, frame_idx] = 1
|
| 562 |
+
elif conditioning == "zero":
|
| 563 |
+
frame_idx = 0
|
| 564 |
+
mask[:, 0] = 1
|
| 565 |
+
elif conditioning == "random":
|
| 566 |
+
rand_idx = np.random.randint(0, num_frames) #randomly choose a frame to condition on between 0 and 8 (inclusive)
|
| 567 |
+
frame_idx = rand_idx
|
| 568 |
+
mask[:, rand_idx] = 1
|
| 569 |
+
elif conditioning in ["ablate_position", "ablate_time"]:
|
| 570 |
+
frame_idx = 0 #zero for simple testing (this won't be hit at testing time)
|
| 571 |
+
elif conditioning == "five":
|
| 572 |
+
frame_idx = 4
|
| 573 |
+
mask[:, 4] = 1
|
| 574 |
+
|
| 575 |
+
original_image_latents = image_latents.clone()
|
| 576 |
+
if conditioning in ["ablate_position", "ablate_time"]:
|
| 577 |
+
image_latents = image_latents[:, frame_idx:frame_idx+1].repeat(1,num_frames, 1, 1, 1)
|
| 578 |
+
else:
|
| 579 |
+
image_latents = image_latents * mask
|
| 580 |
+
|
| 581 |
+
mask = mask == 1 #mask is a boolean tensor
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
clip_image = image[0, frame_idx: frame_idx+1]
|
| 585 |
+
resized_clip_image = _resize_with_antialiasing(clip_image, (224, 224))
|
| 586 |
+
image_embeddings = self._encode_image(resized_clip_image, device, num_videos_per_prompt, self.do_classifier_free_guidance)
|
| 587 |
+
|
| 588 |
+
if motion_bucket_id is None: #this hits for ablation_time at validation time
|
| 589 |
+
motion_bucket_id = 0
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
# 5. Get Added Time IDs
|
| 593 |
+
added_time_ids = self._get_add_time_ids(
|
| 594 |
+
fps,
|
| 595 |
+
motion_bucket_id,
|
| 596 |
+
noise_aug_strength,
|
| 597 |
+
image_embeddings.dtype,
|
| 598 |
+
batch_size,
|
| 599 |
+
num_videos_per_prompt,
|
| 600 |
+
self.do_classifier_free_guidance,
|
| 601 |
+
)
|
| 602 |
+
added_time_ids = added_time_ids.to(device)
|
| 603 |
+
|
| 604 |
+
# 6. Prepare timesteps
|
| 605 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, None, sigmas)
|
| 606 |
+
|
| 607 |
+
# 7. Prepare latent variables
|
| 608 |
+
num_channels_latents = self.unet.config.in_channels
|
| 609 |
+
latents = self.prepare_latents(
|
| 610 |
+
batch_size * num_videos_per_prompt,
|
| 611 |
+
num_frames,
|
| 612 |
+
num_channels_latents,
|
| 613 |
+
height,
|
| 614 |
+
width,
|
| 615 |
+
image_embeddings.dtype,
|
| 616 |
+
device,
|
| 617 |
+
generator,
|
| 618 |
+
latents,
|
| 619 |
+
)
|
| 620 |
+
|
| 621 |
+
# 8. Prepare guidance scale
|
| 622 |
+
guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0)
|
| 623 |
+
guidance_scale = guidance_scale.to(device, latents.dtype)
|
| 624 |
+
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)
|
| 625 |
+
guidance_scale = _append_dims(guidance_scale, latents.ndim)
|
| 626 |
+
|
| 627 |
+
self._guidance_scale = guidance_scale
|
| 628 |
+
|
| 629 |
+
# 9. Denoising loop
|
| 630 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 631 |
+
self._num_timesteps = len(timesteps)
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
alphas_cumprod = 1 / (1 + self.scheduler.sigmas**2)
|
| 635 |
+
alphas = alphas_cumprod / torch.cat((torch.tensor([1.0]), alphas_cumprod[:-1]))
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
progress_bar = tqdm(range(num_inference_steps), disable=not accelerator.is_local_main_process)
|
| 639 |
+
for i, t in enumerate(timesteps):
|
| 640 |
+
# expand the latents if we are doing classifier free guidance - this is because we have the unconditional and the conditional portion
|
| 641 |
+
#this is concatenation along the batch dimension
|
| 642 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 643 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 644 |
+
|
| 645 |
+
# Concatenate image_latents over channels dimension
|
| 646 |
+
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
|
| 647 |
+
|
| 648 |
+
# predict the noise residual
|
| 649 |
+
with torch.no_grad():
|
| 650 |
+
noise_pred_uncond = self.unet(
|
| 651 |
+
latent_model_input[0:1],
|
| 652 |
+
t,
|
| 653 |
+
encoder_hidden_states=image_embeddings[0:1],
|
| 654 |
+
added_time_ids=added_time_ids[0:1],
|
| 655 |
+
return_dict=False,
|
| 656 |
+
)[0]
|
| 657 |
+
|
| 658 |
+
noise_pred_cond = self.unet(
|
| 659 |
+
latent_model_input[1:2],
|
| 660 |
+
t,
|
| 661 |
+
encoder_hidden_states=image_embeddings[1:2],
|
| 662 |
+
added_time_ids=added_time_ids[1:2],
|
| 663 |
+
return_dict=False,
|
| 664 |
+
)[0]
|
| 665 |
+
|
| 666 |
+
with torch.no_grad():
|
| 667 |
+
noise_pred = torch.cat([noise_pred_uncond, noise_pred_cond])
|
| 668 |
+
|
| 669 |
+
# perform guidance
|
| 670 |
+
if self.do_classifier_free_guidance:
|
| 671 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
| 672 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
| 673 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 674 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
if self.scheduler._step_index < len(timesteps) and reconstruction_guidance_scale > 0:
|
| 678 |
+
noise_pred = self.unet(
|
| 679 |
+
torch.cat([latents, image_latents[1:2]], dim=2),
|
| 680 |
+
t,
|
| 681 |
+
encoder_hidden_states=image_embeddings[1:2],
|
| 682 |
+
added_time_ids=added_time_ids[1:2],
|
| 683 |
+
return_dict=False,
|
| 684 |
+
)[0]
|
| 685 |
+
reconstructed_latent_cond = self.scheduler.step(noise_pred, t, latents).pred_original_sample #x_0 - given the noise
|
| 686 |
+
self.scheduler._step_index-=1 #remove the step
|
| 687 |
+
reconstruction_loss = F.mse_loss((image_latents[1, mask[1]]).to(torch.float32)*self.vae.config.scaling_factor, reconstructed_latent_cond[mask[1:2]], reduction="mean") #Squared L2 loss
|
| 688 |
+
reconstruction_grad = torch.autograd.grad(reconstruction_loss, reconstructed_latent_cond, retain_graph=True)[0]
|
| 689 |
+
accelerator.backward(reconstruction_loss)
|
| 690 |
+
latents = latents - reconstruction_guidance_scale*alphas[self.scheduler.step_index]*reconstruction_grad
|
| 691 |
+
|
| 692 |
+
with torch.no_grad():
|
| 693 |
+
if callback_on_step_end is not None:
|
| 694 |
+
callback_kwargs = {}
|
| 695 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 696 |
+
callback_kwargs[k] = locals()[k]
|
| 697 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 698 |
+
latents = callback_outputs.pop("latents", latents)
|
| 699 |
+
|
| 700 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 701 |
+
progress_bar.update()
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
with torch.no_grad():
|
| 705 |
+
if not output_type == "latent":
|
| 706 |
+
# cast back to fp16 if needed
|
| 707 |
+
if needs_upcasting:
|
| 708 |
+
self.vae.to(dtype=torch.float16)
|
| 709 |
+
frames = self.decode_latents(latents, num_frames, decode_chunk_size)
|
| 710 |
+
gt = self.decode_latents(original_image_latents[1:2]*self.vae.config.scaling_factor, num_frames, decode_chunk_size)
|
| 711 |
+
else:
|
| 712 |
+
frames = latents
|
| 713 |
+
|
| 714 |
+
self.maybe_free_model_hooks()
|
| 715 |
+
|
| 716 |
+
if not return_dict:
|
| 717 |
+
return frames
|
| 718 |
+
|
| 719 |
+
return StableVideoDiffusionPipelineOutput(frames=frames), gt
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
# resizing utils
|
| 723 |
+
# TODO: clean up later
|
| 724 |
+
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
|
| 725 |
+
h, w = input.shape[-2:]
|
| 726 |
+
factors = (h / size[0], w / size[1])
|
| 727 |
+
|
| 728 |
+
# First, we have to determine sigma
|
| 729 |
+
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
|
| 730 |
+
sigmas = (
|
| 731 |
+
max((factors[0] - 1.0) / 2.0, 0.001),
|
| 732 |
+
max((factors[1] - 1.0) / 2.0, 0.001),
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
|
| 736 |
+
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
|
| 737 |
+
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
|
| 738 |
+
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
|
| 739 |
+
|
| 740 |
+
# Make sure it is odd
|
| 741 |
+
if (ks[0] % 2) == 0:
|
| 742 |
+
ks = ks[0] + 1, ks[1]
|
| 743 |
+
|
| 744 |
+
if (ks[1] % 2) == 0:
|
| 745 |
+
ks = ks[0], ks[1] + 1
|
| 746 |
+
|
| 747 |
+
input = _gaussian_blur2d(input, ks, sigmas)
|
| 748 |
+
|
| 749 |
+
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
|
| 750 |
+
return output
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
def _compute_padding(kernel_size):
|
| 754 |
+
"""Compute padding tuple."""
|
| 755 |
+
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
|
| 756 |
+
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
|
| 757 |
+
if len(kernel_size) < 2:
|
| 758 |
+
raise AssertionError(kernel_size)
|
| 759 |
+
computed = [k - 1 for k in kernel_size]
|
| 760 |
+
|
| 761 |
+
# for even kernels we need to do asymmetric padding :(
|
| 762 |
+
out_padding = 2 * len(kernel_size) * [0]
|
| 763 |
+
|
| 764 |
+
for i in range(len(kernel_size)):
|
| 765 |
+
computed_tmp = computed[-(i + 1)]
|
| 766 |
+
|
| 767 |
+
pad_front = computed_tmp // 2
|
| 768 |
+
pad_rear = computed_tmp - pad_front
|
| 769 |
+
|
| 770 |
+
out_padding[2 * i + 0] = pad_front
|
| 771 |
+
out_padding[2 * i + 1] = pad_rear
|
| 772 |
+
|
| 773 |
+
return out_padding
|
| 774 |
+
|
| 775 |
+
|
| 776 |
+
def _filter2d(input, kernel):
|
| 777 |
+
# prepare kernel
|
| 778 |
+
b, c, h, w = input.shape
|
| 779 |
+
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
|
| 780 |
+
|
| 781 |
+
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
|
| 782 |
+
|
| 783 |
+
height, width = tmp_kernel.shape[-2:]
|
| 784 |
+
|
| 785 |
+
padding_shape: List[int] = _compute_padding([height, width])
|
| 786 |
+
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
|
| 787 |
+
|
| 788 |
+
# kernel and input tensor reshape to align element-wise or batch-wise params
|
| 789 |
+
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
|
| 790 |
+
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
|
| 791 |
+
|
| 792 |
+
# convolve the tensor with the kernel.
|
| 793 |
+
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
|
| 794 |
+
|
| 795 |
+
out = output.view(b, c, h, w)
|
| 796 |
+
return out
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
def _gaussian(window_size: int, sigma):
|
| 800 |
+
if isinstance(sigma, float):
|
| 801 |
+
sigma = torch.tensor([[sigma]])
|
| 802 |
+
|
| 803 |
+
batch_size = sigma.shape[0]
|
| 804 |
+
|
| 805 |
+
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
|
| 806 |
+
|
| 807 |
+
if window_size % 2 == 0:
|
| 808 |
+
x = x + 0.5
|
| 809 |
+
|
| 810 |
+
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
|
| 811 |
+
|
| 812 |
+
return gauss / gauss.sum(-1, keepdim=True)
|
| 813 |
+
|
| 814 |
+
|
| 815 |
+
def _gaussian_blur2d(input, kernel_size, sigma):
|
| 816 |
+
if isinstance(sigma, tuple):
|
| 817 |
+
sigma = torch.tensor([sigma], dtype=input.dtype)
|
| 818 |
+
else:
|
| 819 |
+
sigma = sigma.to(dtype=input.dtype)
|
| 820 |
+
|
| 821 |
+
ky, kx = int(kernel_size[0]), int(kernel_size[1])
|
| 822 |
+
bs = sigma.shape[0]
|
| 823 |
+
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
|
| 824 |
+
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
|
| 825 |
+
out_x = _filter2d(input, kernel_x[..., None, :])
|
| 826 |
+
out = _filter2d(out_x, kernel_y[..., None])
|
| 827 |
+
|
| 828 |
+
return out
|
training/svd_runner.py
ADDED
|
@@ -0,0 +1,683 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
"""Script to fine-tune Stable Video Diffusion."""
|
| 18 |
+
|
| 19 |
+
from datetime import datetime
|
| 20 |
+
import logging
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import shutil
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
|
| 26 |
+
import accelerate
|
| 27 |
+
import numpy as np
|
| 28 |
+
import torch
|
| 29 |
+
import torch.nn.functional as F
|
| 30 |
+
import torch.utils.checkpoint
|
| 31 |
+
from torch.utils.data import RandomSampler
|
| 32 |
+
import transformers
|
| 33 |
+
from accelerate import Accelerator
|
| 34 |
+
from accelerate.logging import get_logger
|
| 35 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
| 36 |
+
from huggingface_hub import create_repo, upload_folder
|
| 37 |
+
from packaging import version
|
| 38 |
+
from tqdm.auto import tqdm
|
| 39 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
| 40 |
+
from validation import valid_net
|
| 41 |
+
import diffusers
|
| 42 |
+
from svd_pipeline import StableVideoDiffusionPipeline
|
| 43 |
+
from diffusers.models.lora import LoRALinearLayer
|
| 44 |
+
from diffusers import AutoencoderKLTemporalDecoder, EulerDiscreteScheduler, UNetSpatioTemporalConditionModel
|
| 45 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 46 |
+
from diffusers.optimization import get_scheduler
|
| 47 |
+
from diffusers.training_utils import EMAModel
|
| 48 |
+
from diffusers.utils import check_min_version, deprecate, is_wandb_available, load_image
|
| 49 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 50 |
+
from utils import parse_args, FocalStackDataset, OutsidePhotosDataset, rand_log_normal, tensor_to_vae_latent, load_image, _resize_with_antialiasing, encode_image, get_add_time_ids
|
| 51 |
+
import wandb
|
| 52 |
+
import random
|
| 53 |
+
from random import choices
|
| 54 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
| 55 |
+
check_min_version("0.24.0.dev0")
|
| 56 |
+
|
| 57 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 58 |
+
|
| 59 |
+
import numpy as np
|
| 60 |
+
import PIL.Image
|
| 61 |
+
import torch
|
| 62 |
+
from typing import Callable, Dict, List, Optional, Union
|
| 63 |
+
import os
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def main():
|
| 68 |
+
args = parse_args()
|
| 69 |
+
|
| 70 |
+
#SETUP PYTORCH CUDA - Without this I have memory overflow
|
| 71 |
+
#pytorch 2.4.1 is important for this to work
|
| 72 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 73 |
+
|
| 74 |
+
if not is_wandb_available():
|
| 75 |
+
raise ImportError(
|
| 76 |
+
"Make sure to install wandb if you want to use it for logging during training.")
|
| 77 |
+
import wandb
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
currentSecond= datetime.now().second
|
| 81 |
+
currentMinute = datetime.now().minute
|
| 82 |
+
currentHour = datetime.now().hour
|
| 83 |
+
currentDay = datetime.now().day
|
| 84 |
+
currentMonth = datetime.now().month
|
| 85 |
+
currentYear = datetime.now().year
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
if args.non_ema_revision is not None:
|
| 89 |
+
deprecate(
|
| 90 |
+
"non_ema_revision!=None",
|
| 91 |
+
"0.15.0",
|
| 92 |
+
message=(
|
| 93 |
+
"Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to"
|
| 94 |
+
" use `--variant=non_ema` instead."
|
| 95 |
+
),
|
| 96 |
+
)
|
| 97 |
+
logging_dir = os.path.join(args.output_dir, args.logging_dir)
|
| 98 |
+
accelerator_project_config = ProjectConfiguration(
|
| 99 |
+
project_dir=args.output_dir, logging_dir=logging_dir)
|
| 100 |
+
ddp_kwargs = accelerate.DistributedDataParallelKwargs(find_unused_parameters=True)
|
| 101 |
+
accelerator = Accelerator(
|
| 102 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
| 103 |
+
mixed_precision=args.mixed_precision,
|
| 104 |
+
log_with=args.report_to,
|
| 105 |
+
project_config=accelerator_project_config,
|
| 106 |
+
kwargs_handlers=[ddp_kwargs]
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
accelerator.init_trackers(
|
| 110 |
+
project_name=args.wandb_project,
|
| 111 |
+
init_kwargs={"wandb": { "name" : args.run_name}}
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
generator = torch.Generator(
|
| 115 |
+
device=accelerator.device).manual_seed(args.seed)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# Make one log on every process with the configuration for debugging.
|
| 121 |
+
logging.basicConfig(
|
| 122 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 123 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 124 |
+
level=logging.INFO,
|
| 125 |
+
)
|
| 126 |
+
logger.info(accelerator.state, main_process_only=False)
|
| 127 |
+
if accelerator.is_local_main_process:
|
| 128 |
+
transformers.utils.logging.set_verbosity_warning()
|
| 129 |
+
diffusers.utils.logging.set_verbosity_info()
|
| 130 |
+
else:
|
| 131 |
+
transformers.utils.logging.set_verbosity_error()
|
| 132 |
+
diffusers.utils.logging.set_verbosity_error()
|
| 133 |
+
|
| 134 |
+
# If passed along, set the training seed now.
|
| 135 |
+
if args.seed is not None:
|
| 136 |
+
set_seed(args.seed)
|
| 137 |
+
|
| 138 |
+
# Handle the repository creation
|
| 139 |
+
if accelerator.is_main_process:
|
| 140 |
+
if args.output_dir is not None:
|
| 141 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 142 |
+
|
| 143 |
+
if args.push_to_hub:
|
| 144 |
+
repo_id = create_repo(
|
| 145 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
| 146 |
+
).repo_id
|
| 147 |
+
|
| 148 |
+
# Load img encoder, tokenizer and models.
|
| 149 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(
|
| 150 |
+
args.pretrained_model_name_or_path, subfolder="feature_extractor", revision=args.revision
|
| 151 |
+
)
|
| 152 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 153 |
+
args.pretrained_model_name_or_path, subfolder="image_encoder", revision=args.revision
|
| 154 |
+
)
|
| 155 |
+
vae = AutoencoderKLTemporalDecoder.from_pretrained(
|
| 156 |
+
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant="fp16")
|
| 157 |
+
unet = UNetSpatioTemporalConditionModel.from_pretrained(
|
| 158 |
+
args.pretrained_model_name_or_path if args.pretrain_unet is None else args.pretrain_unet,
|
| 159 |
+
subfolder="unet",
|
| 160 |
+
low_cpu_mem_usage=True,
|
| 161 |
+
variant="fp16"
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
#unet= UNetSpatioTemporalConditionModel()
|
| 165 |
+
|
| 166 |
+
# Freeze vae and image_encoder
|
| 167 |
+
vae.requires_grad_(False)
|
| 168 |
+
image_encoder.requires_grad_(False)
|
| 169 |
+
|
| 170 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
| 171 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
| 172 |
+
weight_dtype = torch.float32
|
| 173 |
+
if accelerator.mixed_precision == "fp16":
|
| 174 |
+
weight_dtype = torch.float16
|
| 175 |
+
elif accelerator.mixed_precision == "bf16":
|
| 176 |
+
weight_dtype = torch.bfloat16
|
| 177 |
+
|
| 178 |
+
# Move image_encoder and vae to gpu and cast to weight_dtype
|
| 179 |
+
image_encoder.to(accelerator.device, dtype=weight_dtype)
|
| 180 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
| 181 |
+
|
| 182 |
+
# Create EMA for the unet.
|
| 183 |
+
if args.use_ema:
|
| 184 |
+
ema_unet = EMAModel(unet.parameters(
|
| 185 |
+
), model_cls=UNetSpatioTemporalConditionModel, model_config=unet.config, use_ema_warmup=True, inv_gamma=1, ower=3/4)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
if args.enable_xformers_memory_efficient_attention:
|
| 190 |
+
if is_xformers_available():
|
| 191 |
+
import xformers
|
| 192 |
+
|
| 193 |
+
xformers_version = version.parse(xformers.__version__)
|
| 194 |
+
if xformers_version == version.parse("0.0.16"):
|
| 195 |
+
logger.warn(
|
| 196 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
| 197 |
+
)
|
| 198 |
+
unet.enable_xformers_memory_efficient_attention()
|
| 199 |
+
else:
|
| 200 |
+
raise ValueError(
|
| 201 |
+
"xformers is not available. Make sure it is installed correctly")
|
| 202 |
+
|
| 203 |
+
# `accelerate` 0.16.0 will have better support for customized saving
|
| 204 |
+
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
|
| 205 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
| 206 |
+
def save_model_hook(models, weights, output_dir):
|
| 207 |
+
if args.use_ema:
|
| 208 |
+
ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))
|
| 209 |
+
|
| 210 |
+
for i, model in enumerate(models):
|
| 211 |
+
model.save_pretrained(os.path.join(output_dir, "unet"))
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
# make sure to pop weight so that corresponding model is not saved again
|
| 215 |
+
weights.pop()
|
| 216 |
+
|
| 217 |
+
def load_model_hook(models, input_dir):
|
| 218 |
+
|
| 219 |
+
if args.use_ema:
|
| 220 |
+
load_model = EMAModel.from_pretrained(os.path.join(
|
| 221 |
+
input_dir, "unet_ema"), UNetSpatioTemporalConditionModel)
|
| 222 |
+
ema_unet.load_state_dict(load_model.state_dict())
|
| 223 |
+
ema_unet.to(accelerator.device)
|
| 224 |
+
del load_model
|
| 225 |
+
|
| 226 |
+
for i in range(len(models)):
|
| 227 |
+
# pop models so that they are not loaded again
|
| 228 |
+
model = models.pop()
|
| 229 |
+
|
| 230 |
+
# load diffusers style into model
|
| 231 |
+
load_model = UNetSpatioTemporalConditionModel.from_pretrained(
|
| 232 |
+
input_dir, subfolder="unet")
|
| 233 |
+
model.register_to_config(**load_model.config)
|
| 234 |
+
|
| 235 |
+
model.load_state_dict(load_model.state_dict())
|
| 236 |
+
del load_model
|
| 237 |
+
|
| 238 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
| 239 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
| 240 |
+
|
| 241 |
+
if args.gradient_checkpointing:
|
| 242 |
+
unet.enable_gradient_checkpointing()
|
| 243 |
+
|
| 244 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
| 245 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
| 246 |
+
if args.allow_tf32:
|
| 247 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 248 |
+
|
| 249 |
+
if args.scale_lr:
|
| 250 |
+
args.learning_rate = (
|
| 251 |
+
args.learning_rate * args.gradient_accumulation_steps *
|
| 252 |
+
args.per_gpu_batch_size * accelerator.num_processes
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
optimizer_cls = torch.optim.AdamW
|
| 256 |
+
|
| 257 |
+
parameters_list = []
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
# Customize the parameters that need to be trained; if necessary, you can uncomment them yourself.
|
| 261 |
+
for name, param in unet.named_parameters():
|
| 262 |
+
parameters_list.append(param)
|
| 263 |
+
if 'temporal_transformer_block' in name: #or 'conv_norm_out' in name or 'conv_out' in name or 'conv_in' in name or 'spatial_res_block' in name or 'up_block' in name:
|
| 264 |
+
parameters_list.append(param)
|
| 265 |
+
param.requires_grad = True
|
| 266 |
+
else:
|
| 267 |
+
param.requires_grad = False
|
| 268 |
+
zero_latent = 0
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
optimizer = optimizer_cls(
|
| 273 |
+
parameters_list,
|
| 274 |
+
lr=args.learning_rate,
|
| 275 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
| 276 |
+
weight_decay=args.adam_weight_decay,
|
| 277 |
+
eps=args.adam_epsilon,
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# DataLoaders creation:
|
| 281 |
+
args.global_batch_size = args.per_gpu_batch_size * accelerator.num_processes
|
| 282 |
+
|
| 283 |
+
if args.photos:
|
| 284 |
+
train_dataset = OutsidePhotosDataset(data_folder=args.data_folder, sample_frames=args.num_frames)
|
| 285 |
+
val_dataset = OutsidePhotosDataset(data_folder=args.data_folder, sample_frames=args.num_frames)
|
| 286 |
+
else:
|
| 287 |
+
train_dataset = FocalStackDataset(args.data_folder, args.splits_dir, sample_frames=args.num_frames, split="train")
|
| 288 |
+
val_dataset = FocalStackDataset(args.data_folder, args.splits_dir, sample_frames=args.num_frames, split="val" if not args.test else "test")
|
| 289 |
+
sampler = RandomSampler(train_dataset)
|
| 290 |
+
train_dataloader = torch.utils.data.DataLoader(
|
| 291 |
+
train_dataset,
|
| 292 |
+
sampler=sampler,
|
| 293 |
+
batch_size=args.per_gpu_batch_size,
|
| 294 |
+
num_workers=args.num_workers,
|
| 295 |
+
drop_last=True
|
| 296 |
+
)
|
| 297 |
+
val_dataloader = torch.utils.data.DataLoader(
|
| 298 |
+
val_dataset,
|
| 299 |
+
batch_size=args.per_gpu_batch_size,
|
| 300 |
+
num_workers=args.num_workers,
|
| 301 |
+
shuffle=False,
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# Scheduler and math around the number of training steps.
|
| 305 |
+
overrode_max_train_steps = False
|
| 306 |
+
num_update_steps_per_epoch = math.ceil(
|
| 307 |
+
len(train_dataloader) / args.gradient_accumulation_steps)
|
| 308 |
+
if args.max_train_steps is None:
|
| 309 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
| 310 |
+
overrode_max_train_steps = True
|
| 311 |
+
|
| 312 |
+
lr_scheduler = get_scheduler(
|
| 313 |
+
args.lr_scheduler,
|
| 314 |
+
optimizer=optimizer,
|
| 315 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
| 316 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
# Prepare everything with our `accelerator`.
|
| 323 |
+
unet, optimizer, lr_scheduler, train_dataloader, val_dataloader = accelerator.prepare(
|
| 324 |
+
unet, optimizer, lr_scheduler, train_dataloader, val_dataloader
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
if args.use_ema:
|
| 328 |
+
ema_unet.to(accelerator.device)
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
# attribute handling for models using DDP
|
| 333 |
+
if isinstance(unet, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)):
|
| 334 |
+
unet = unet.module
|
| 335 |
+
|
| 336 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
| 337 |
+
num_update_steps_per_epoch = math.ceil(
|
| 338 |
+
len(train_dataloader) / args.gradient_accumulation_steps)
|
| 339 |
+
if overrode_max_train_steps:
|
| 340 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
| 341 |
+
# Afterwards we recalculate our number of training epochs
|
| 342 |
+
args.num_train_epochs = math.ceil(
|
| 343 |
+
args.max_train_steps / num_update_steps_per_epoch)
|
| 344 |
+
|
| 345 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
| 346 |
+
# The trackers initializes automatically on the main process.
|
| 347 |
+
if accelerator.is_main_process:
|
| 348 |
+
accelerator.init_trackers("SVDXtend", config=vars(args))
|
| 349 |
+
|
| 350 |
+
# Train!
|
| 351 |
+
total_batch_size = args.per_gpu_batch_size * \
|
| 352 |
+
accelerator.num_processes * args.gradient_accumulation_steps
|
| 353 |
+
|
| 354 |
+
logger.info("***** Running training *****")
|
| 355 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
| 356 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
| 357 |
+
logger.info(
|
| 358 |
+
f" Instantaneous batch size per device = {args.per_gpu_batch_size}")
|
| 359 |
+
logger.info(
|
| 360 |
+
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
| 361 |
+
logger.info(
|
| 362 |
+
f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
| 363 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
| 364 |
+
global_step = 0
|
| 365 |
+
first_epoch = 0
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
# Potentially load in the weights and states from a previous save
|
| 369 |
+
if args.load_from_checkpoint:
|
| 370 |
+
|
| 371 |
+
path = args.load_from_checkpoint
|
| 372 |
+
#
|
| 373 |
+
if path is None:
|
| 374 |
+
accelerator.print(
|
| 375 |
+
f"Checkpoint '{args.load_from_checkpoint}' does not exist. Starting a new training run."
|
| 376 |
+
)
|
| 377 |
+
args.load_from_checkpoint = None
|
| 378 |
+
else:
|
| 379 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
| 380 |
+
accelerator.load_state(path, strict=False)
|
| 381 |
+
global_step = int(os.path.basename(path).split("-")[1])
|
| 382 |
+
|
| 383 |
+
resume_global_step = global_step * args.gradient_accumulation_steps
|
| 384 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
| 385 |
+
|
| 386 |
+
resume_step = resume_global_step % (
|
| 387 |
+
num_update_steps_per_epoch * args.gradient_accumulation_steps)
|
| 388 |
+
|
| 389 |
+
# Only show the progress bar once on each machine.
|
| 390 |
+
progress_bar = tqdm(range(global_step, args.max_train_steps),
|
| 391 |
+
disable=not accelerator.is_local_main_process)
|
| 392 |
+
progress_bar.set_description("Steps")
|
| 393 |
+
|
| 394 |
+
# print("ARGS PHOTOS: ", args.photos)
|
| 395 |
+
# if args.photos:
|
| 396 |
+
# print("MAKING OUTSIDE PHOTOS DATASET")
|
| 397 |
+
# train_dataset = OutsidePhotosDataset(data_folder=args.data_folder, sample_frames=args.num_frames)
|
| 398 |
+
# val_dataset = OutsidePhotosDataset(data_folder=args.data_folder, sample_frames=args.num_frames)
|
| 399 |
+
|
| 400 |
+
# sampler = RandomSampler(train_dataset)
|
| 401 |
+
# train_dataloader = torch.utils.data.DataLoader(
|
| 402 |
+
# train_dataset,
|
| 403 |
+
# sampler=sampler,
|
| 404 |
+
# batch_size=args.per_gpu_batch_size,
|
| 405 |
+
# num_workers=args.num_workers,
|
| 406 |
+
# drop_last=True
|
| 407 |
+
# )
|
| 408 |
+
# val_dataloader = torch.utils.data.DataLoader(
|
| 409 |
+
# val_dataset,
|
| 410 |
+
# batch_size=args.per_gpu_batch_size,
|
| 411 |
+
# num_workers=args.num_workers,
|
| 412 |
+
# shuffle=False,
|
| 413 |
+
# )
|
| 414 |
+
|
| 415 |
+
# train_dataloader, val_dataloader = accelerator.prepare(
|
| 416 |
+
# train_dataloader, val_dataloader)
|
| 417 |
+
if args.test:
|
| 418 |
+
first_epoch = 0 #just so I enter loop for test (regardless of training iterations)
|
| 419 |
+
|
| 420 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
| 421 |
+
train_loss = 0.0
|
| 422 |
+
for step, batch in enumerate(train_dataloader):
|
| 423 |
+
unet.train()
|
| 424 |
+
if not args.test:
|
| 425 |
+
with accelerator.accumulate(unet):
|
| 426 |
+
# first, convert images to latent space.
|
| 427 |
+
pixel_values = batch["pixel_values"].to(weight_dtype).to(
|
| 428 |
+
accelerator.device, non_blocking=True
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
conditional_pixel_values = pixel_values
|
| 433 |
+
latents = tensor_to_vae_latent(pixel_values, vae, otype="sample")
|
| 434 |
+
|
| 435 |
+
noise = torch.randn_like(latents)
|
| 436 |
+
bsz = latents.shape[0]
|
| 437 |
+
|
| 438 |
+
cond_sigmas = rand_log_normal(shape=[bsz,], loc=-3.0, scale=0.5).to(latents)
|
| 439 |
+
noise_aug_strength = cond_sigmas[0] # TODO: support batch > 1
|
| 440 |
+
cond_sigmas = cond_sigmas[:, None, None, None, None]
|
| 441 |
+
|
| 442 |
+
conditional_pixel_values = \
|
| 443 |
+
torch.randn_like(conditional_pixel_values) * cond_sigmas + conditional_pixel_values #- Comment this out as I don't want to add noise to the cond
|
| 444 |
+
conditional_latents = tensor_to_vae_latent(conditional_pixel_values, vae, otype="sample")
|
| 445 |
+
conditional_latents = conditional_latents / vae.config.scaling_factor #
|
| 446 |
+
|
| 447 |
+
##you do noisy conditioning for the
|
| 448 |
+
|
| 449 |
+
# Sample a random timestep for each image
|
| 450 |
+
# P_mean=0.7 P_std=1.6
|
| 451 |
+
sigmas = rand_log_normal(shape=[bsz,], loc=0.7, scale=1.6).to(latents.device)
|
| 452 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
| 453 |
+
# (this is the forward diffusion process)
|
| 454 |
+
sigmas = sigmas[:, None, None, None, None]
|
| 455 |
+
noisy_latents = latents + noise * sigmas
|
| 456 |
+
timesteps = torch.Tensor(
|
| 457 |
+
[0.25 * sigma.log() for sigma in sigmas]).to(accelerator.device)
|
| 458 |
+
|
| 459 |
+
inp_noisy_latents = noisy_latents / ((sigmas**2 + 1) ** 0.5)
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
conditioning = args.conditioning
|
| 463 |
+
# Create a tensor of zeros with the same shape as the repeated conditional_latents
|
| 464 |
+
if conditioning == "zero":
|
| 465 |
+
random_frames = [0]
|
| 466 |
+
elif conditioning == "random":
|
| 467 |
+
#choose a random number between 0 and 8 inclusive
|
| 468 |
+
random_frames = [np.random.randint(0, args.num_frames)]
|
| 469 |
+
elif conditioning in ["ablate_position", "ablate_time"] :
|
| 470 |
+
random_frames = [np.random.randint(0, args.num_frames)]
|
| 471 |
+
elif conditioning == "ablate_single_frame":
|
| 472 |
+
input_random_frame = np.random.randint(0, args.num_frames)
|
| 473 |
+
output_random_frame = np.random.randint(0, args.num_frames)
|
| 474 |
+
elif conditioning == "random_single_double_triple":
|
| 475 |
+
num_imgs = random.randint(1, 3)
|
| 476 |
+
random_frames = choices(range(args.num_frames), k=num_imgs)
|
| 477 |
+
|
| 478 |
+
# Get the text embedding for conditioning.
|
| 479 |
+
encoder_hidden_states = encode_image(
|
| 480 |
+
pixel_values[:, random_frames[0], :, :, :].float(),
|
| 481 |
+
feature_extractor, image_encoder, weight_dtype, accelerator)
|
| 482 |
+
|
| 483 |
+
# Here I input a fixed numerical value for 'motion_bucket_id', which is not reasonable.
|
| 484 |
+
# However, I am unable to fully align with the calculation method of the motion score,
|
| 485 |
+
# so I adopted this approach. The same applies to the 'fps' (frames per second).
|
| 486 |
+
conditioning_num = 0
|
| 487 |
+
|
| 488 |
+
if conditioning != "ablate_time":
|
| 489 |
+
conditioning_num = 0
|
| 490 |
+
else:
|
| 491 |
+
conditioning_num = random_frames[0]
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
added_time_ids = get_add_time_ids(
|
| 496 |
+
7, # fixed
|
| 497 |
+
conditioning_num, # motion_bucket_id = 127, fixed
|
| 498 |
+
noise_aug_strength, # noise_aug_strength == cond_sigmas
|
| 499 |
+
encoder_hidden_states.dtype,
|
| 500 |
+
bsz,
|
| 501 |
+
unet
|
| 502 |
+
)
|
| 503 |
+
added_time_ids = added_time_ids.to(latents.device)
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
# Conditioning dropout to support classifier-free guidance during inference. For more details
|
| 508 |
+
# check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.0args.num_frames800.
|
| 509 |
+
if args.conditioning_dropout_prob is not None:
|
| 510 |
+
random_p = torch.rand(
|
| 511 |
+
bsz, device=latents.device, generator=generator)
|
| 512 |
+
# Sample masks for the edit prompts. - I'm not sure if prompts are used in this model. Sam ewith the text conditioning that comes next.
|
| 513 |
+
|
| 514 |
+
#oh encoder_hidden_states is derived form the image.
|
| 515 |
+
|
| 516 |
+
prompt_mask = random_p < 2 * args.conditioning_dropout_prob
|
| 517 |
+
prompt_mask = prompt_mask.reshape(bsz, 1, 1)
|
| 518 |
+
# Final text conditioning.
|
| 519 |
+
null_conditioning = torch.zeros_like(encoder_hidden_states)
|
| 520 |
+
encoder_hidden_states = torch.where(
|
| 521 |
+
prompt_mask, null_conditioning.unsqueeze(1), encoder_hidden_states.unsqueeze(1))
|
| 522 |
+
# Sample masks for the original images.
|
| 523 |
+
image_mask_dtype = conditional_latents.dtype
|
| 524 |
+
image_mask = 1 - (
|
| 525 |
+
(random_p >= args.conditioning_dropout_prob).to(
|
| 526 |
+
image_mask_dtype)
|
| 527 |
+
* (random_p < 3 * args.conditioning_dropout_prob).to(image_mask_dtype)
|
| 528 |
+
)
|
| 529 |
+
image_mask = image_mask.reshape(bsz, 1, 1, 1)
|
| 530 |
+
# Final image conditioning.
|
| 531 |
+
conditional_latents = image_mask * conditional_latents #this basically 0s out some of the image latents
|
| 532 |
+
|
| 533 |
+
# Concatenate the `conditional_latents` with the `noisy_latents`.
|
| 534 |
+
# conditional_latents = conditional_latents.unsqueeze(
|
| 535 |
+
# 1).repeat(1, noisy_latents.shape[1], 1, 1, 1)
|
| 536 |
+
if conditioning == "ablate_single_frame":
|
| 537 |
+
#put input frame at first frame
|
| 538 |
+
conditional_latents = conditional_latents[:, 0:1].repeat(1, args.num_frames, 1, 1, 1)
|
| 539 |
+
elif conditioning in ["ablate_position", "ablate_time"]:
|
| 540 |
+
|
| 541 |
+
conditional_latents = conditional_latents[:, random_frames[0]:random_frames[0]+1].repeat(1,args.num_frames, 1, 1, 1)
|
| 542 |
+
else:
|
| 543 |
+
mask = torch.zeros_like(conditional_latents)
|
| 544 |
+
#choose a random frame to allow for the model to learn to focus on different frames (set mask to 1 for that frame)
|
| 545 |
+
mask[:, random_frames] = 1
|
| 546 |
+
conditional_latents = conditional_latents * mask
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
inp_noisy_latents = torch.cat(
|
| 550 |
+
[inp_noisy_latents, conditional_latents], dim=2)
|
| 551 |
+
|
| 552 |
+
# check https://arxiv.org/abs/2206.00364(the EDM-framework) for more details.
|
| 553 |
+
target = latents
|
| 554 |
+
model_pred = unet(
|
| 555 |
+
inp_noisy_latents, timesteps, encoder_hidden_states, added_time_ids=added_time_ids).sample
|
| 556 |
+
|
| 557 |
+
# Denoise the latents
|
| 558 |
+
c_out = -sigmas / ((sigmas**2 + 1)**0.5)
|
| 559 |
+
c_skip = 1 / (sigmas**2 + 1)
|
| 560 |
+
denoised_latents = model_pred * c_out + c_skip * noisy_latents
|
| 561 |
+
weighing = (1 + sigmas ** 2) * (sigmas**-2.0)
|
| 562 |
+
|
| 563 |
+
# MSE loss
|
| 564 |
+
loss = torch.mean(
|
| 565 |
+
(weighing.float() * (denoised_latents.float() -
|
| 566 |
+
target.float()) ** 2).reshape(target.shape[0], -1),
|
| 567 |
+
dim=1,
|
| 568 |
+
)
|
| 569 |
+
loss = loss.mean()
|
| 570 |
+
|
| 571 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
| 572 |
+
avg_loss = accelerator.gather(
|
| 573 |
+
loss.repeat(args.per_gpu_batch_size)).mean()
|
| 574 |
+
train_loss += avg_loss.item() / args.gradient_accumulation_steps
|
| 575 |
+
|
| 576 |
+
# Backpropagate
|
| 577 |
+
accelerator.backward(loss)
|
| 578 |
+
lr_scheduler.step()
|
| 579 |
+
optimizer.zero_grad()
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
| 585 |
+
if accelerator.sync_gradients:
|
| 586 |
+
|
| 587 |
+
if args.use_ema:
|
| 588 |
+
ema_unet.step(unet.parameters())
|
| 589 |
+
progress_bar.update(1)
|
| 590 |
+
global_step += 1
|
| 591 |
+
accelerator.log({"train_loss": train_loss}, step=global_step)
|
| 592 |
+
train_loss = 0.0
|
| 593 |
+
|
| 594 |
+
if accelerator.is_main_process:
|
| 595 |
+
|
| 596 |
+
# save checkpoints!
|
| 597 |
+
if global_step % args.checkpointing_steps == 0:
|
| 598 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
| 599 |
+
if args.checkpoints_total_limit is not None:
|
| 600 |
+
checkpoints = os.listdir(args.output_dir)
|
| 601 |
+
checkpoints = [
|
| 602 |
+
d for d in checkpoints if d.startswith("checkpoint")]
|
| 603 |
+
checkpoints = sorted(
|
| 604 |
+
checkpoints, key=lambda x: int(x.split("-")[1]))
|
| 605 |
+
|
| 606 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
| 607 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
| 608 |
+
num_to_remove = len(
|
| 609 |
+
checkpoints) - args.checkpoints_total_limit + 1
|
| 610 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
| 611 |
+
|
| 612 |
+
logger.info(
|
| 613 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
| 614 |
+
)
|
| 615 |
+
logger.info(
|
| 616 |
+
f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
| 617 |
+
|
| 618 |
+
for removing_checkpoint in removing_checkpoints:
|
| 619 |
+
removing_checkpoint = os.path.join(
|
| 620 |
+
args.output_dir, removing_checkpoint)
|
| 621 |
+
shutil.rmtree(removing_checkpoint)
|
| 622 |
+
|
| 623 |
+
save_path = os.path.join(
|
| 624 |
+
args.output_dir, f"checkpoint-{global_step}")
|
| 625 |
+
accelerator.save_state(save_path)
|
| 626 |
+
logger.info(f"Saved state to {save_path}")
|
| 627 |
+
# sample images!
|
| 628 |
+
if args.test or (global_step % args.validation_steps == 0) or (global_step == 1):
|
| 629 |
+
if args.use_ema:
|
| 630 |
+
# Store the UNet parameters temporarily and load the EMA parameters to perform inference.
|
| 631 |
+
ema_unet.store(unet.parameters())
|
| 632 |
+
ema_unet.copy_to(unet.parameters())
|
| 633 |
+
|
| 634 |
+
valid_net(args, val_dataset, val_dataloader, unet, image_encoder, vae, zero_latent, accelerator, global_step, weight_dtype)
|
| 635 |
+
if args.use_ema:
|
| 636 |
+
# Switch back to the original UNet parameters.
|
| 637 |
+
ema_unet.restore(unet.parameters())
|
| 638 |
+
if args.test:
|
| 639 |
+
break
|
| 640 |
+
|
| 641 |
+
torch.cuda.empty_cache()
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
logs = {"step_loss": loss.detach().item(
|
| 647 |
+
), "lr": lr_scheduler.get_last_lr()[0]}
|
| 648 |
+
progress_bar.set_postfix(**logs)
|
| 649 |
+
|
| 650 |
+
if global_step >= args.max_train_steps:
|
| 651 |
+
break
|
| 652 |
+
if args.test:
|
| 653 |
+
break
|
| 654 |
+
# Create the pipeline using the trained modules and save it.
|
| 655 |
+
accelerator.wait_for_everyone()
|
| 656 |
+
if accelerator.is_main_process and not args.test:
|
| 657 |
+
|
| 658 |
+
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
| 659 |
+
args.pretrained_model_name_or_path,
|
| 660 |
+
image_encoder=accelerator.unwrap_model(image_encoder),
|
| 661 |
+
vae=accelerator.unwrap_model(vae),
|
| 662 |
+
unet=accelerator.unwrap_model(ema_unet) if args.use_ema else unet,
|
| 663 |
+
revision=args.revision,
|
| 664 |
+
)
|
| 665 |
+
pipeline.save_pretrained(args.output_dir)
|
| 666 |
+
|
| 667 |
+
if args.use_ema:
|
| 668 |
+
ema_unet.copy_to(unet.parameters())
|
| 669 |
+
|
| 670 |
+
if args.push_to_hub:
|
| 671 |
+
upload_folder(
|
| 672 |
+
repo_id=repo_id,
|
| 673 |
+
folder_path=args.output_dir,
|
| 674 |
+
commit_message="End of training",
|
| 675 |
+
ignore_patterns=["step_*", "epoch_*"],
|
| 676 |
+
)
|
| 677 |
+
accelerator.end_training()
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
if __name__ == "__main__":
|
| 681 |
+
main()
|
| 682 |
+
|
| 683 |
+
|
training/utils.py
ADDED
|
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
from torch.utils.data import Dataset
|
| 3 |
+
import cv2
|
| 4 |
+
import argparse
|
| 5 |
+
import glob
|
| 6 |
+
import random
|
| 7 |
+
import logging
|
| 8 |
+
import torch
|
| 9 |
+
import os
|
| 10 |
+
import numpy as np
|
| 11 |
+
import PIL
|
| 12 |
+
from PIL import Image, ImageDraw
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
from urllib.parse import urlparse
|
| 15 |
+
from diffusers.utils import load_image
|
| 16 |
+
import math
|
| 17 |
+
|
| 18 |
+
# copy from https://github.com/crowsonkb/k-diffusion.git
|
| 19 |
+
def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
|
| 20 |
+
"""Draws samples from an lognormal distribution."""
|
| 21 |
+
u = torch.rand(shape, dtype=dtype, device=device) * (1 - 2e-7) + 1e-7
|
| 22 |
+
return torch.distributions.Normal(loc, scale).icdf(u).exp()
|
| 23 |
+
|
| 24 |
+
def encode_image(pixel_values, feature_extractor, image_encoder, weight_dtype, accelerator):
|
| 25 |
+
# pixel: [-1, 1]
|
| 26 |
+
pixel_values = _resize_with_antialiasing(pixel_values, (224, 224))
|
| 27 |
+
# We unnormalize it after resizing.
|
| 28 |
+
pixel_values = (pixel_values + 1.0) / 2.0
|
| 29 |
+
|
| 30 |
+
# Normalize the image with for CLIP input
|
| 31 |
+
pixel_values = feature_extractor(
|
| 32 |
+
images=pixel_values,
|
| 33 |
+
do_normalize=True,
|
| 34 |
+
do_center_crop=False,
|
| 35 |
+
do_resize=False,
|
| 36 |
+
do_rescale=False,
|
| 37 |
+
return_tensors="pt",
|
| 38 |
+
).pixel_values
|
| 39 |
+
|
| 40 |
+
pixel_values = pixel_values.to(
|
| 41 |
+
device=accelerator.device, dtype=weight_dtype)
|
| 42 |
+
image_embeddings = image_encoder(pixel_values).image_embeds
|
| 43 |
+
return image_embeddings
|
| 44 |
+
|
| 45 |
+
def get_add_time_ids(
|
| 46 |
+
fps,
|
| 47 |
+
motion_bucket_id,
|
| 48 |
+
noise_aug_strength,
|
| 49 |
+
dtype,
|
| 50 |
+
batch_size,
|
| 51 |
+
unet
|
| 52 |
+
):
|
| 53 |
+
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
|
| 54 |
+
|
| 55 |
+
passed_add_embed_dim = unet.config.addition_time_embed_dim * \
|
| 56 |
+
len(add_time_ids)
|
| 57 |
+
expected_add_embed_dim = unet.add_embedding.linear_1.in_features
|
| 58 |
+
|
| 59 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
| 60 |
+
raise ValueError(
|
| 61 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 65 |
+
add_time_ids = add_time_ids.repeat(batch_size, 1)
|
| 66 |
+
return add_time_ids
|
| 67 |
+
|
| 68 |
+
def find_scale(height, width):
|
| 69 |
+
"""
|
| 70 |
+
Finds a scale factor such that the number of pixels is less than 500,000
|
| 71 |
+
and the dimensions are rounded down to the nearest multiple of 64.
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
height (int): The original height of the image.
|
| 75 |
+
width (int): The original width of the image.
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
tuple: The scaled height and width as integers.
|
| 79 |
+
"""
|
| 80 |
+
max_pixels = 500000
|
| 81 |
+
|
| 82 |
+
# Start with no scaling
|
| 83 |
+
scale = 1.0
|
| 84 |
+
|
| 85 |
+
while True:
|
| 86 |
+
# Calculate the scaled dimensions
|
| 87 |
+
scaled_height = math.floor((height * scale) / 64) * 64
|
| 88 |
+
scaled_width = math.floor((width * scale) / 64) * 64
|
| 89 |
+
|
| 90 |
+
# Check if the scaled dimensions meet the pixel constraint
|
| 91 |
+
if scaled_height * scaled_width <= max_pixels:
|
| 92 |
+
return scaled_height, scaled_width
|
| 93 |
+
|
| 94 |
+
# Reduce the scale slightly
|
| 95 |
+
scale -= 0.01
|
| 96 |
+
|
| 97 |
+
class OutsidePhotosDataset(Dataset):
|
| 98 |
+
def __init__(self, data_folder, width=1024, height=576, sample_frames=9):
|
| 99 |
+
self.data_folder = data_folder
|
| 100 |
+
self.scenes = sorted(glob.glob(os.path.join(data_folder, "*")))
|
| 101 |
+
|
| 102 |
+
#get images that end in .JPG,.jpg, .png
|
| 103 |
+
self.scenes = [scene for scene in self.scenes if scene.endswith(".JPG") or scene.endswith(".jpg") or scene.endswith(".png") or scene.endswith(".jpeg") or scene.endswith(".JPG")]
|
| 104 |
+
#make each scene a tuple anf for each scene, put it 9 times in the tuple - tuple should look like (scene_name, idx (0-8))
|
| 105 |
+
|
| 106 |
+
self.scenes = [(scene, idx) for scene in self.scenes for idx in range(9)]
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
self.num_scenes = len(self.scenes)
|
| 110 |
+
self.width = width
|
| 111 |
+
self.height = height
|
| 112 |
+
self.sample_frames = sample_frames
|
| 113 |
+
self.icc_profiles = [None]*self.num_scenes
|
| 114 |
+
|
| 115 |
+
def __len__(self):
|
| 116 |
+
return self.num_scenes
|
| 117 |
+
|
| 118 |
+
def __getitem__(self, idx):
|
| 119 |
+
#get the scene and the index
|
| 120 |
+
#create an empty tensor to store the pixel values and place the scene in the tensor (load and resize the image)
|
| 121 |
+
|
| 122 |
+
scene, focal_stack_num = self.scenes[idx]
|
| 123 |
+
|
| 124 |
+
with Image.open(scene) as img:
|
| 125 |
+
|
| 126 |
+
self.icc_profiles[idx] = img.info.get("icc_profile")
|
| 127 |
+
icc_profile = img.info.get("icc_profile")
|
| 128 |
+
if icc_profile is None:
|
| 129 |
+
icc_profile = "none"
|
| 130 |
+
original_pixels = torch.from_numpy(np.array(img)).float().permute(2,0,1)
|
| 131 |
+
original_pixels = original_pixels / 255
|
| 132 |
+
width, height = img.size
|
| 133 |
+
scaled_width, scaled_height = find_scale(width, height)
|
| 134 |
+
|
| 135 |
+
img_resized = img.resize((scaled_width, scaled_height))
|
| 136 |
+
img_tensor = torch.from_numpy(np.array(img_resized)).float()
|
| 137 |
+
img_normalized = img_tensor / 127.5 - 1
|
| 138 |
+
img_normalized = img_normalized.permute(2, 0, 1)
|
| 139 |
+
|
| 140 |
+
pixels = torch.zeros((self.sample_frames, 3, scaled_height, scaled_width))
|
| 141 |
+
pixels[focal_stack_num] = img_normalized
|
| 142 |
+
|
| 143 |
+
return {"pixel_values": pixels, "idx": idx//9, "focal_stack_num": focal_stack_num, "original_pixel_values": original_pixels, 'icc_profile': icc_profile}
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class FocalStackDataset(Dataset):
|
| 149 |
+
def __init__(self, data_folder: str, splits_dir, split="train", num_samples=100000, width=640, height=896, sample_frames=9): #4.5
|
| 150 |
+
#800*600 - 480000
|
| 151 |
+
#896*672 - 602112
|
| 152 |
+
"""
|
| 153 |
+
Args:
|
| 154 |
+
num_samples (int): Number of samples in the dataset.
|
| 155 |
+
channels (int): Number of channels, default is 3 for RGB.
|
| 156 |
+
"""
|
| 157 |
+
self.num_samples = num_samples
|
| 158 |
+
self.sample_frames = sample_frames
|
| 159 |
+
# Define the path to the folder containing video frames
|
| 160 |
+
self.data_folder = data_folder
|
| 161 |
+
self.splits_dir = splits_dir
|
| 162 |
+
|
| 163 |
+
size = "midsize"
|
| 164 |
+
# Use glob to find matching folders
|
| 165 |
+
# List to store the desired paths
|
| 166 |
+
rig_directories = []
|
| 167 |
+
|
| 168 |
+
# Walk through the directory
|
| 169 |
+
for root, dirs, files in os.walk(data_folder):
|
| 170 |
+
# Check if the path matches "downscaled/undistorted/Rig*"
|
| 171 |
+
for directory in dirs:
|
| 172 |
+
if directory.startswith("RigCenter") and f"{size}/undistorted" in root.replace("\\", "/"):
|
| 173 |
+
rig_directory = os.path.join(root, directory)
|
| 174 |
+
#check that rig_directory contains all 9 images
|
| 175 |
+
if len(glob.glob(os.path.join(rig_directory, "*.jpg"))) == 9:
|
| 176 |
+
rig_directories.append(rig_directory)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
self.scenes = sorted(rig_directories) #sort the files by name
|
| 180 |
+
|
| 181 |
+
if split == "train":
|
| 182 |
+
#shuffle the scenes
|
| 183 |
+
random.shuffle(self.scenes)
|
| 184 |
+
self.split = split
|
| 185 |
+
|
| 186 |
+
debug = False
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
if debug:
|
| 190 |
+
self.scenes = self.scenes[50:60]
|
| 191 |
+
elif split == "train":
|
| 192 |
+
pkl_file = os.path.join(self.splits_dir, "train_scenes.pkl")
|
| 193 |
+
#load the train scenes
|
| 194 |
+
with open(pkl_file, "rb") as f:
|
| 195 |
+
pkl_scenes = pickle.load(f)
|
| 196 |
+
|
| 197 |
+
#only get scenes that are found in pkl file
|
| 198 |
+
self.scenes = [scene for scene in self.scenes if scene.split('/')[-4] in pkl_scenes]
|
| 199 |
+
|
| 200 |
+
elif split == "val":
|
| 201 |
+
pkl_file = os.path.join(self.splits_dir, "test_scenes.pkl") #use first 10 test scenes for val (just for visualization)
|
| 202 |
+
|
| 203 |
+
#load the test scenes
|
| 204 |
+
with open(pkl_file, "rb") as f:
|
| 205 |
+
pkl_scenes = pickle.load(f)
|
| 206 |
+
|
| 207 |
+
#only get scenes that are found in pkl file
|
| 208 |
+
self.scenes = [scene for scene in self.scenes if scene.split('/')[-4] in pkl_scenes]
|
| 209 |
+
self.scenes = self.scenes[:10]
|
| 210 |
+
else:
|
| 211 |
+
pkl_file = os.path.join(self.splits_dir, "test_scenes.pkl")
|
| 212 |
+
|
| 213 |
+
#load the test scenes
|
| 214 |
+
with open(pkl_file, "rb") as f:
|
| 215 |
+
pkl_scenes = pickle.load(f)
|
| 216 |
+
|
| 217 |
+
#only get scenes that are found in pkl file
|
| 218 |
+
self.scenes = [scene for scene in self.scenes if scene.split('/')[-4] in pkl_scenes]
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
if split == "test":
|
| 223 |
+
self.scenes = [(scene, idx) for scene in self.scenes for idx in range(self.sample_frames)]
|
| 224 |
+
|
| 225 |
+
self.num_scenes = len(self.scenes)
|
| 226 |
+
|
| 227 |
+
max_trdata = 0
|
| 228 |
+
if max_trdata > 0:
|
| 229 |
+
self.scenes = self.scenes[:max_trdata]
|
| 230 |
+
|
| 231 |
+
self.data_store = {}
|
| 232 |
+
|
| 233 |
+
logging.info(f'Creating {split} dataset with {self.num_scenes} examples')
|
| 234 |
+
|
| 235 |
+
self.channels = 3
|
| 236 |
+
self.width = width
|
| 237 |
+
self.height = height
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def __len__(self):
|
| 241 |
+
return self.num_scenes
|
| 242 |
+
|
| 243 |
+
def __getitem__(self, idx):
|
| 244 |
+
"""
|
| 245 |
+
Args:
|
| 246 |
+
idx (int): Index of the sample to return.
|
| 247 |
+
|
| 248 |
+
Returns:
|
| 249 |
+
dict: A dictionary containing the 'pixel_values' tensor of shape (16, channels, 320, 512).
|
| 250 |
+
"""
|
| 251 |
+
# Randomly select a folder (representing a video) from the base folder
|
| 252 |
+
if self.split == "test":
|
| 253 |
+
chosen_folder, focal_stack_num = self.scenes[idx]
|
| 254 |
+
else:
|
| 255 |
+
chosen_folder = self.scenes[idx]
|
| 256 |
+
frames = os.listdir(chosen_folder)
|
| 257 |
+
#get only frames that are jpg
|
| 258 |
+
frames = [frame for frame in frames if frame.endswith(".jpg")]
|
| 259 |
+
# Sort the frames by name
|
| 260 |
+
frames.sort()
|
| 261 |
+
|
| 262 |
+
#Pad the frames list out
|
| 263 |
+
selected_frames = frames[:self.sample_frames]
|
| 264 |
+
# Initialize a tensor to store the pixel values
|
| 265 |
+
pixel_values = torch.empty((self.sample_frames, self.channels, self.height, self.width))
|
| 266 |
+
|
| 267 |
+
original_pixel_values = torch.empty((self.sample_frames, self.channels, 896, 640))
|
| 268 |
+
|
| 269 |
+
# Load and process each frame
|
| 270 |
+
for i, frame_name in enumerate(selected_frames):
|
| 271 |
+
frame_path = os.path.join(chosen_folder, frame_name)
|
| 272 |
+
with Image.open(frame_path) as img:
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
# Resize the image and convert it to a tensor
|
| 276 |
+
img_resized = img.resize((self.width, self.height))
|
| 277 |
+
img_tensor = torch.from_numpy(np.array(img_resized)).float()
|
| 278 |
+
original_img_tensor = torch.from_numpy(np.array(img)).float()
|
| 279 |
+
|
| 280 |
+
# Normalize the image by scaling pixel values to [-1, 1]
|
| 281 |
+
img_normalized = img_tensor / 127.5 - 1
|
| 282 |
+
original_img_normalized = original_img_tensor / 127.5 - 1
|
| 283 |
+
|
| 284 |
+
# Rearrange channels if necessary
|
| 285 |
+
if self.channels == 3:
|
| 286 |
+
img_normalized = img_normalized.permute(
|
| 287 |
+
2, 0, 1) # For RGB images
|
| 288 |
+
original_img_normalized = original_img_normalized.permute(2, 0, 1)
|
| 289 |
+
|
| 290 |
+
pixel_values[i] = img_normalized
|
| 291 |
+
original_pixel_values[i] = original_img_normalized
|
| 292 |
+
|
| 293 |
+
if self.sample_frames == 10: #special case for 10 frames where we duplicate the 9th frame (sometimes reduced color artifacts)
|
| 294 |
+
pixel_values[9] = pixel_values[8]
|
| 295 |
+
original_pixel_values[9] = original_pixel_values[8]
|
| 296 |
+
out_dict = {'pixel_values': pixel_values, "idx": idx, "original_pixel_values": original_pixel_values}
|
| 297 |
+
if self.split == "test":
|
| 298 |
+
out_dict["focal_stack_num"] = focal_stack_num
|
| 299 |
+
out_dict["idx"] = idx//9
|
| 300 |
+
return out_dict
|
| 301 |
+
|
| 302 |
+
# resizing utils
|
| 303 |
+
# TODO: clean up later
|
| 304 |
+
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
|
| 305 |
+
h, w = input.shape[-2:]
|
| 306 |
+
factors = (h / size[0], w / size[1])
|
| 307 |
+
|
| 308 |
+
# First, we have to determine sigma
|
| 309 |
+
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
|
| 310 |
+
sigmas = (
|
| 311 |
+
max((factors[0] - 1.0) / 2.0, 0.001),
|
| 312 |
+
max((factors[1] - 1.0) / 2.0, 0.001),
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
|
| 316 |
+
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
|
| 317 |
+
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
|
| 318 |
+
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
|
| 319 |
+
|
| 320 |
+
# Make sure it is odd
|
| 321 |
+
if (ks[0] % 2) == 0:
|
| 322 |
+
ks = ks[0] + 1, ks[1]
|
| 323 |
+
|
| 324 |
+
if (ks[1] % 2) == 0:
|
| 325 |
+
ks = ks[0], ks[1] + 1
|
| 326 |
+
|
| 327 |
+
input = _gaussian_blur2d(input, ks, sigmas)
|
| 328 |
+
|
| 329 |
+
output = torch.nn.functional.interpolate(
|
| 330 |
+
input, size=size, mode=interpolation, align_corners=align_corners)
|
| 331 |
+
return output
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def _compute_padding(kernel_size):
|
| 335 |
+
"""Compute padding tuple."""
|
| 336 |
+
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
|
| 337 |
+
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
|
| 338 |
+
if len(kernel_size) < 2:
|
| 339 |
+
raise AssertionError(kernel_size)
|
| 340 |
+
computed = [k - 1 for k in kernel_size]
|
| 341 |
+
|
| 342 |
+
# for even kernels we need to do asymmetric padding :(
|
| 343 |
+
out_padding = 2 * len(kernel_size) * [0]
|
| 344 |
+
|
| 345 |
+
for i in range(len(kernel_size)):
|
| 346 |
+
computed_tmp = computed[-(i + 1)]
|
| 347 |
+
|
| 348 |
+
pad_front = computed_tmp // 2
|
| 349 |
+
pad_rear = computed_tmp - pad_front
|
| 350 |
+
|
| 351 |
+
out_padding[2 * i + 0] = pad_front
|
| 352 |
+
out_padding[2 * i + 1] = pad_rear
|
| 353 |
+
|
| 354 |
+
return out_padding
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def _filter2d(input, kernel):
|
| 358 |
+
# prepare kernel
|
| 359 |
+
b, c, h, w = input.shape
|
| 360 |
+
tmp_kernel = kernel[:, None, ...].to(
|
| 361 |
+
device=input.device, dtype=input.dtype)
|
| 362 |
+
|
| 363 |
+
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
|
| 364 |
+
|
| 365 |
+
height, width = tmp_kernel.shape[-2:]
|
| 366 |
+
|
| 367 |
+
padding_shape: list[int] = _compute_padding([height, width])
|
| 368 |
+
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
|
| 369 |
+
|
| 370 |
+
# kernel and input tensor reshape to align element-wise or batch-wise params
|
| 371 |
+
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
|
| 372 |
+
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
|
| 373 |
+
|
| 374 |
+
# convolve the tensor with the kernel.
|
| 375 |
+
output = torch.nn.functional.conv2d(
|
| 376 |
+
input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
|
| 377 |
+
|
| 378 |
+
out = output.view(b, c, h, w)
|
| 379 |
+
return out
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
def _gaussian(window_size: int, sigma):
|
| 383 |
+
if isinstance(sigma, float):
|
| 384 |
+
sigma = torch.tensor([[sigma]])
|
| 385 |
+
|
| 386 |
+
batch_size = sigma.shape[0]
|
| 387 |
+
|
| 388 |
+
x = (torch.arange(window_size, device=sigma.device,
|
| 389 |
+
dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
|
| 390 |
+
|
| 391 |
+
if window_size % 2 == 0:
|
| 392 |
+
x = x + 0.5
|
| 393 |
+
|
| 394 |
+
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
|
| 395 |
+
|
| 396 |
+
return gauss / gauss.sum(-1, keepdim=True)
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
def _gaussian_blur2d(input, kernel_size, sigma):
|
| 400 |
+
if isinstance(sigma, tuple):
|
| 401 |
+
sigma = torch.tensor([sigma], dtype=input.dtype)
|
| 402 |
+
else:
|
| 403 |
+
sigma = sigma.to(dtype=input.dtype)
|
| 404 |
+
|
| 405 |
+
ky, kx = int(kernel_size[0]), int(kernel_size[1])
|
| 406 |
+
bs = sigma.shape[0]
|
| 407 |
+
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
|
| 408 |
+
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
|
| 409 |
+
out_x = _filter2d(input, kernel_x[..., None, :])
|
| 410 |
+
out = _filter2d(out_x, kernel_y[..., None])
|
| 411 |
+
|
| 412 |
+
return out
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
def export_to_video(video_frames, output_video_path, fps):
|
| 416 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 417 |
+
h, w, _ = video_frames[0].shape
|
| 418 |
+
video_writer = cv2.VideoWriter(
|
| 419 |
+
output_video_path, fourcc, fps=fps, frameSize=(w, h))
|
| 420 |
+
for i in range(len(video_frames)):
|
| 421 |
+
img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
|
| 422 |
+
video_writer.write(img)
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
def export_to_gif(frames, output_gif_path, fps):
|
| 426 |
+
"""
|
| 427 |
+
Export a list of frames to a GIF.
|
| 428 |
+
|
| 429 |
+
Args:
|
| 430 |
+
- frames (list): List of frames (as numpy arrays or PIL Image objects).
|
| 431 |
+
- output_gif_path (str): Path to save the output GIF.
|
| 432 |
+
- duration_ms (int): Duration of each frame in milliseconds.
|
| 433 |
+
|
| 434 |
+
"""
|
| 435 |
+
# Convert numpy arrays to PIL Images if needed
|
| 436 |
+
pil_frames = [Image.fromarray(frame) if isinstance(
|
| 437 |
+
frame, np.ndarray) else frame for frame in frames]
|
| 438 |
+
|
| 439 |
+
pil_frames[0].save(output_gif_path.replace('.mp4', '.gif'),
|
| 440 |
+
format='GIF',
|
| 441 |
+
append_images=pil_frames[1:],
|
| 442 |
+
save_all=True,
|
| 443 |
+
duration=500,
|
| 444 |
+
loop=0)
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def tensor_to_vae_latent(t, vae, otype="sample"):
|
| 448 |
+
video_length = t.shape[1]
|
| 449 |
+
|
| 450 |
+
t = rearrange(t, "b f c h w -> (b f) c h w")
|
| 451 |
+
if otype == "sample":
|
| 452 |
+
latents = vae.encode(t).latent_dist.sample()
|
| 453 |
+
else:
|
| 454 |
+
latents = vae.encode(t).latent_dist.mode()
|
| 455 |
+
latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length)
|
| 456 |
+
latents = latents * vae.config.scaling_factor
|
| 457 |
+
|
| 458 |
+
return latents
|
| 459 |
+
|
| 460 |
+
import yaml
|
| 461 |
+
def parse_config(config_path="config.yaml"):
|
| 462 |
+
with open(config_path, "r") as f:
|
| 463 |
+
config = yaml.safe_load(f)
|
| 464 |
+
|
| 465 |
+
# handle distributed training rank
|
| 466 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
| 467 |
+
if env_local_rank != -1 and env_local_rank != config.get("local_rank", -1):
|
| 468 |
+
config["local_rank"] = env_local_rank
|
| 469 |
+
|
| 470 |
+
# default fallback: non_ema_revision = revision
|
| 471 |
+
if config.get("non_ema_revision") is None:
|
| 472 |
+
config["non_ema_revision"] = config.get("revision")
|
| 473 |
+
|
| 474 |
+
return config
|
| 475 |
+
|
| 476 |
+
def parse_args():
|
| 477 |
+
parser = argparse.ArgumentParser(description="SVD Training Script")
|
| 478 |
+
parser.add_argument(
|
| 479 |
+
"--config",
|
| 480 |
+
type=str,
|
| 481 |
+
default="svd/scripts/training/configs/stage1_base.yaml",
|
| 482 |
+
help="Path to the config file.",
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
args = parser.parse_args()
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
# load YAML and merge into args
|
| 489 |
+
config = parse_config(args.config)
|
| 490 |
+
# combine yaml + command line args (command line has priority)
|
| 491 |
+
for k, v in vars(args).items():
|
| 492 |
+
if v is not None:
|
| 493 |
+
config[k] = v
|
| 494 |
+
|
| 495 |
+
# convert dict to argparse.Namespace for downstream compatibility
|
| 496 |
+
args = argparse.Namespace(**config)
|
| 497 |
+
|
| 498 |
+
print("OUTPUT DIR: ", args.output_dir)
|
| 499 |
+
return args
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
def download_image(url):
|
| 503 |
+
original_image = (
|
| 504 |
+
lambda image_url_or_path: load_image(image_url_or_path)
|
| 505 |
+
if urlparse(image_url_or_path).scheme
|
| 506 |
+
else PIL.Image.open(image_url_or_path).convert("RGB")
|
| 507 |
+
)(url)
|
| 508 |
+
return original_image
|
| 509 |
+
|
training/validation.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torchmetrics import MetricCollection
|
| 2 |
+
from svd_pipeline import StableVideoDiffusionPipeline
|
| 3 |
+
from accelerate.logging import get_logger
|
| 4 |
+
import os
|
| 5 |
+
from utils import load_image
|
| 6 |
+
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
import videoio
|
| 9 |
+
import torchmetrics.image
|
| 10 |
+
import matplotlib.image
|
| 11 |
+
from PIL import Image
|
| 12 |
+
|
| 13 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def valid_net(args, val_dataset, val_dataloader, unet, image_encoder, vae, zero, accelerator, global_step, weight_dtype):
|
| 17 |
+
logger.info(
|
| 18 |
+
f"Running validation... \n Generating {args.num_validation_images} videos."
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# The models need unwrapping because for compatibility in distributed training mode.
|
| 22 |
+
|
| 23 |
+
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
| 24 |
+
args.pretrained_model_name_or_path,
|
| 25 |
+
unet=unet,
|
| 26 |
+
image_encoder=image_encoder,
|
| 27 |
+
vae=vae,
|
| 28 |
+
revision=args.revision,
|
| 29 |
+
torch_dtype=weight_dtype,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
pipeline.set_progress_bar_config(disable=True)
|
| 33 |
+
|
| 34 |
+
# run inference
|
| 35 |
+
val_save_dir = os.path.join(
|
| 36 |
+
args.output_dir, "validation_images")
|
| 37 |
+
|
| 38 |
+
print("Validation images will be saved to ", val_save_dir)
|
| 39 |
+
|
| 40 |
+
os.makedirs(val_save_dir, exist_ok=True)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
num_frames = args.num_frames
|
| 44 |
+
unet.eval()
|
| 45 |
+
with torch.autocast(
|
| 46 |
+
str(accelerator.device).replace(":0", ""), enabled=accelerator.mixed_precision == "fp16"
|
| 47 |
+
):
|
| 48 |
+
for batch in val_dataloader:
|
| 49 |
+
#clear gradients (the torch no grad is the magic that makes this work)
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
torch.cuda.empty_cache()
|
| 52 |
+
|
| 53 |
+
pixel_values = batch["pixel_values"].to(accelerator.device)
|
| 54 |
+
original_pixel_values = batch['original_pixel_values'].to(accelerator.device)
|
| 55 |
+
idx = batch["idx"].to(accelerator.device)
|
| 56 |
+
if "focal_stack_num" in batch:
|
| 57 |
+
focal_stack_num = batch["focal_stack_num"][0].item()
|
| 58 |
+
else:
|
| 59 |
+
focal_stack_num = None
|
| 60 |
+
|
| 61 |
+
svd_output, gt_frames = pipeline(
|
| 62 |
+
pixel_values,
|
| 63 |
+
height=pixel_values.shape[3],
|
| 64 |
+
width=pixel_values.shape[4],
|
| 65 |
+
num_frames=args.num_frames,
|
| 66 |
+
decode_chunk_size=8,
|
| 67 |
+
motion_bucket_id=0 if args.conditioning != "ablate_time" else focal_stack_num,
|
| 68 |
+
min_guidance_scale=1.5,
|
| 69 |
+
max_guidance_scale=1.5,
|
| 70 |
+
reconstruction_guidance_scale=args.reconstruction_guidance,
|
| 71 |
+
fps=7,
|
| 72 |
+
noise_aug_strength=0,
|
| 73 |
+
accelerator=accelerator,
|
| 74 |
+
weight_dtype=weight_dtype,
|
| 75 |
+
conditioning = args.conditioning,
|
| 76 |
+
focal_stack_num = focal_stack_num,
|
| 77 |
+
zero=zero
|
| 78 |
+
# generator=generator,
|
| 79 |
+
)
|
| 80 |
+
video_frames = svd_output.frames[0]
|
| 81 |
+
gt_frames = gt_frames[0]
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
|
| 86 |
+
if args.num_frames == 10:
|
| 87 |
+
#remove a frame at end from video_frames and gt_frames
|
| 88 |
+
video_frames = video_frames[:, :-1]
|
| 89 |
+
gt_frames = gt_frames[:, :-1]
|
| 90 |
+
original_pixel_values = original_pixel_values[:, :-1]
|
| 91 |
+
|
| 92 |
+
if len(original_pixel_values.shape) == 5:
|
| 93 |
+
pixel_values = original_pixel_values[0] #assuming batch size is 1
|
| 94 |
+
else:
|
| 95 |
+
pixel_values = original_pixel_values.repeat(num_frames, 1, 1, 1)
|
| 96 |
+
pixel_values_normalized = pixel_values*0.5 + 0.5
|
| 97 |
+
pixel_values_normalized = torch.clamp(pixel_values_normalized,0,1)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
video_frames_normalized = video_frames*0.5 + 0.5
|
| 103 |
+
video_frames_normalized = torch.clamp(video_frames_normalized,0,1)
|
| 104 |
+
video_frames_normalized = video_frames_normalized.permute(1,0,2,3)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
gt_frames = torch.clamp(gt_frames,0,1)
|
| 108 |
+
gt_frames = gt_frames.permute(1,0,2,3)
|
| 109 |
+
|
| 110 |
+
#RESIZE images
|
| 111 |
+
video_frames_normalized = torch.nn.functional.interpolate(video_frames_normalized, ((pixel_values.shape[2]//2)*2, (pixel_values.shape[3]//2)*2), mode='bilinear')
|
| 112 |
+
gt_frames = torch.nn.functional.interpolate(gt_frames, ((pixel_values.shape[2]//2)*2, (pixel_values.shape[3]//2)*2), mode='bilinear')
|
| 113 |
+
pixel_values_normalized = torch.nn.functional.interpolate(pixel_values_normalized, ((pixel_values.shape[2]//2)*2, (pixel_values.shape[3]//2)*2), mode='bilinear')
|
| 114 |
+
|
| 115 |
+
os.makedirs(os.path.join(val_save_dir, f"position_{focal_stack_num}/videos"), exist_ok=True)
|
| 116 |
+
videoio.videosave(os.path.join(
|
| 117 |
+
val_save_dir,
|
| 118 |
+
f"position_{focal_stack_num}/videos/step_{global_step}_val_img_{idx[0].item()}.mp4",
|
| 119 |
+
), video_frames_normalized.permute(0,2,3,1).cpu().numpy(), fps=5)
|
| 120 |
+
|
| 121 |
+
if args.test:
|
| 122 |
+
#save images
|
| 123 |
+
os.makedirs(os.path.join(val_save_dir, f"position_{focal_stack_num}/images"), exist_ok=True)
|
| 124 |
+
if not args.photos:
|
| 125 |
+
for i in range(num_frames):
|
| 126 |
+
matplotlib.image.imsave(os.path.join(val_save_dir, f"position_{focal_stack_num}/images/img_{idx[0].item()}_frame_{i}.png"), video_frames_normalized[i].permute(1,2,0).cpu().numpy())
|
| 127 |
+
else:
|
| 128 |
+
for i in range(num_frames):
|
| 129 |
+
#use Pillow to save images
|
| 130 |
+
img = Image.fromarray((video_frames_normalized[i].permute(1,2,0).cpu().numpy()*255).astype(np.uint8))
|
| 131 |
+
#use index to assign icc profile to img
|
| 132 |
+
if batch['icc_profile'][0] != "none":
|
| 133 |
+
img.info['icc_profile'] = batch['icc_profile'][0]
|
| 134 |
+
img.save(os.path.join(val_save_dir, f"position_{focal_stack_num}/images/img_{idx[0].item()}_frame_{i}.png"))
|
| 135 |
+
del video_frames
|
| 136 |
+
|
| 137 |
+
accelerator.wait_for_everyone()
|
| 138 |
+
|
| 139 |
+
#clear gradients (the torch no grad is the magic that makes this work)
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
torch.cuda.empty_cache()
|
| 142 |
+
|
| 143 |
+
del pipeline
|
| 144 |
+
|
| 145 |
+
accelerator.wait_for_everyone() #this is really important and we need to make sure everyone is leaving at the same time
|