urnotwen commited on
Commit
438cd9d
·
verified ·
1 Parent(s): dacc8fd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -0
app.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForImageSegmentation
3
+ import torch
4
+ from torchvision import transforms
5
+ from PIL import Image
6
+ import io
7
+
8
+ # --- 1. 初始化模型 (只會在啟動時執行一次) ---
9
+ model_id = "briaai/RMBG-2.0"
10
+ print(f"正在載入模型: {model_id} ...")
11
+
12
+ try:
13
+ # 載入模型到 CPU (Hugging Face Free Tier 只有 CPU)
14
+ model = AutoModelForImageSegmentation.from_pretrained(model_id, trust_remote_code=True)
15
+ device = torch.device("cpu") # 強制使用 CPU
16
+ model.to(device)
17
+ model.eval() # 設定為評估模式
18
+ print("模型載入成功!")
19
+ except Exception as e:
20
+ print(f"模型載入失敗: {e}")
21
+
22
+ # --- 2. 定義圖像處理邏輯 ---
23
+ def process_image(input_image):
24
+ if input_image is None:
25
+ return None
26
+
27
+ # 紀錄原始尺寸
28
+ orig_w, orig_h = input_image.size
29
+
30
+ # 準備輸入 (RMBG 2.0 建議尺寸為 1024x1024)
31
+ transform_image = transforms.Compose([
32
+ transforms.Resize((1024, 1024)),
33
+ transforms.ToTensor(),
34
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
35
+ ])
36
+
37
+ input_tensor = transform_image(input_image).unsqueeze(0).to(device)
38
+
39
+ # 推理 (Inference)
40
+ with torch.no_grad():
41
+ preds = model(input_tensor)[0][0]
42
+ # 還原到原始尺寸
43
+ preds = torch.nn.functional.interpolate(preds, size=(orig_h, orig_w), mode='bilinear', align_corners=False)
44
+ preds = torch.sigmoid(preds)
45
+
46
+ # 處理遮罩
47
+ mask = preds.squeeze().cpu().numpy()
48
+
49
+ # 轉回 PIL Image
50
+ mask_img = Image.fromarray((mask * 255).astype('uint8'), mode='L')
51
+
52
+ # 合成去背圖
53
+ output_img = input_image.convert("RGBA")
54
+ output_img.putalpha(mask_img)
55
+
56
+ return output_img
57
+
58
+ # --- 3. 設定 PWA 與手機優化 HTML ---
59
+ # 這些標籤會讓網頁在「加入主畫面」後變成全螢幕 APP
60
+ pwa_header = """
61
+ <head>
62
+ <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
63
+ <meta name="apple-mobile-web-app-capable" content="yes">
64
+ <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
65
+ <meta name="theme-color" content="#0b0f19">
66
+ <title>AI 去背神器</title>
67
+ <style>
68
+ /* 隱藏 Gradio 預設的頁尾,讓畫面更乾淨 */
69
+ footer {display: none !important;}
70
+ .gradio-container {min-height: 100vh !important;}
71
+ </style>
72
+ </head>
73
+ """
74
+
75
+ # --- 4. 建立 Gradio 介面 ---
76
+ with gr.Blocks(head=pwa_header, theme=gr.themes.Soft()) as app:
77
+
78
+ gr.Markdown(
79
+ """
80
+ # ✂️ AI 自動去背 (RMBG 2.0)
81
+ 上傳照片,自動去除背景。
82
+ """
83
+ )
84
+
85
+ with gr.Row():
86
+ # 手機上通常是直向排列,Gradio 會自動響應
87
+ with gr.Column():
88
+ input_img = gr.Image(type="pil", label="點擊上傳或拍照", sources=["upload", "clipboard"])
89
+ btn = gr.Button("開始去背", variant="primary", size="lg")
90
+
91
+ with gr.Column():
92
+ output_img = gr.Image(type="pil", label="去背結果 (長按儲存)", format="png", show_download_button=True)
93
+
94
+ # 按鈕事件
95
+ btn.click(fn=process_image, inputs=input_img, outputs=output_img)
96
+
97
+ # 啟動應用
98
+ if __name__ == "__main__":
99
+ app.launch()