Commit
·
5cc0838
1
Parent(s):
cd54f94
Use fine tuned embedding model in Gradio UI
Browse files- README.md +1 -2
- gradio_app.py +1 -1
README.md
CHANGED
|
@@ -82,8 +82,7 @@ Agentic reasoning allows contextual memory, thematic consistency, and accurate m
|
|
| 82 |
|
| 83 |
| Source / API | Purpose |
|
| 84 |
| ----------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| 85 |
-
| **`
|
| 86 |
-
| **Tavily Search API** | For agent-initiated internet augmentation (e.g., cross-referencing external theological commentaries, definitions, or historical context). Used as a fallback for missing or ambiguous context. |
|
| 87 |
| **OpenAI APIs (`gpt-4.1`, `text-embedding-3-small`)** | Language generation and semantic embedding for both retrieval and agent reasoning. |
|
| 88 |
| **LangSmith** | Observability and debugging of multi-agent reasoning chains. |
|
| 89 |
| **RAGAS** | Evaluation of the RAG pipeline using metrics like **Faithfulness**, **Answer Relevance**, **Context Precision**, and **Context Recall**. |
|
|
|
|
| 82 |
|
| 83 |
| Source / API | Purpose |
|
| 84 |
| ----------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
| 85 |
+
| **`kjv.csv`** | Core knowledge base of biblical content. Each row includes `Text`, `Book`, `Chapter`, and `Verse`, allowing semantic indexing and metadata filtering. |
|
|
|
|
| 86 |
| **OpenAI APIs (`gpt-4.1`, `text-embedding-3-small`)** | Language generation and semantic embedding for both retrieval and agent reasoning. |
|
| 87 |
| **LangSmith** | Observability and debugging of multi-agent reasoning chains. |
|
| 88 |
| **RAGAS** | Evaluation of the RAG pipeline using metrics like **Faithfulness**, **Answer Relevance**, **Context Precision**, and **Context Recall**. |
|
gradio_app.py
CHANGED
|
@@ -87,7 +87,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css="footer {display:none !important}") a
|
|
| 87 |
|
| 88 |
vectorstore = create_qdrant_vectorstore(
|
| 89 |
documents=chunked_docs_df.to_dict("records"),
|
| 90 |
-
embedding_model=
|
| 91 |
collection_name=settings.COLLECTION_NAME_FINETUNED,
|
| 92 |
)
|
| 93 |
|
|
|
|
| 87 |
|
| 88 |
vectorstore = create_qdrant_vectorstore(
|
| 89 |
documents=chunked_docs_df.to_dict("records"),
|
| 90 |
+
embedding_model=get_finetuned_embedding_model(),
|
| 91 |
collection_name=settings.COLLECTION_NAME_FINETUNED,
|
| 92 |
)
|
| 93 |
|