vijayarulmuthu commited on
Commit
5cc0838
·
1 Parent(s): cd54f94

Use fine tuned embedding model in Gradio UI

Browse files
Files changed (2) hide show
  1. README.md +1 -2
  2. gradio_app.py +1 -1
README.md CHANGED
@@ -82,8 +82,7 @@ Agentic reasoning allows contextual memory, thematic consistency, and accurate m
82
 
83
  | Source / API | Purpose |
84
  | ----------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
85
- | **`kjv_preprocessed.csv`** | Core knowledge base of biblical content. Each row includes `Text`, `Book`, `Chapter`, and `Verse`, allowing semantic indexing and metadata filtering. |
86
- | **Tavily Search API** | For agent-initiated internet augmentation (e.g., cross-referencing external theological commentaries, definitions, or historical context). Used as a fallback for missing or ambiguous context. |
87
  | **OpenAI APIs (`gpt-4.1`, `text-embedding-3-small`)** | Language generation and semantic embedding for both retrieval and agent reasoning. |
88
  | **LangSmith** | Observability and debugging of multi-agent reasoning chains. |
89
  | **RAGAS** | Evaluation of the RAG pipeline using metrics like **Faithfulness**, **Answer Relevance**, **Context Precision**, and **Context Recall**. |
 
82
 
83
  | Source / API | Purpose |
84
  | ----------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
85
+ | **`kjv.csv`** | Core knowledge base of biblical content. Each row includes `Text`, `Book`, `Chapter`, and `Verse`, allowing semantic indexing and metadata filtering. |
 
86
  | **OpenAI APIs (`gpt-4.1`, `text-embedding-3-small`)** | Language generation and semantic embedding for both retrieval and agent reasoning. |
87
  | **LangSmith** | Observability and debugging of multi-agent reasoning chains. |
88
  | **RAGAS** | Evaluation of the RAG pipeline using metrics like **Faithfulness**, **Answer Relevance**, **Context Precision**, and **Context Recall**. |
gradio_app.py CHANGED
@@ -87,7 +87,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css="footer {display:none !important}") a
87
 
88
  vectorstore = create_qdrant_vectorstore(
89
  documents=chunked_docs_df.to_dict("records"),
90
- embedding_model=get_openai_embedding_model(),
91
  collection_name=settings.COLLECTION_NAME_FINETUNED,
92
  )
93
 
 
87
 
88
  vectorstore = create_qdrant_vectorstore(
89
  documents=chunked_docs_df.to_dict("records"),
90
+ embedding_model=get_finetuned_embedding_model(),
91
  collection_name=settings.COLLECTION_NAME_FINETUNED,
92
  )
93