Spaces:
Runtime error
Runtime error
| import os | |
| import tempfile | |
| import streamlit as st | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.document_loaders import ( | |
| Docx2txtLoader, | |
| PyPDFLoader, | |
| TextLoader, | |
| UnstructuredEPubLoader, | |
| ) | |
| from langchain_community.vectorstores import DocArrayInMemorySearch | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| EMBEDDING_MODEL_NAME = "all-MiniLM-L6-v2" | |
| def configure_retriever(files): | |
| # Read documents | |
| docs = [] | |
| temp_dir = tempfile.TemporaryDirectory() | |
| for file in files: | |
| temp_filepath = os.path.join(temp_dir.name, file.name) | |
| with open(temp_filepath, "wb") as f: | |
| f.write(file.getvalue()) | |
| _, extension = os.path.splitext(temp_filepath) | |
| # Load the file using the appropriate loader | |
| if extension == ".pdf": | |
| loader = PyPDFLoader(temp_filepath) | |
| elif extension == ".docx": | |
| loader = Docx2txtLoader(temp_filepath) | |
| elif extension == ".txt": | |
| loader = TextLoader(temp_filepath) | |
| elif extension == ".epub": | |
| loader = UnstructuredEPubLoader(temp_filepath) | |
| else: | |
| st.write("This document format is not supported!") | |
| return None | |
| docs.extend(loader.load()) | |
| # Split documents | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200) | |
| splits = text_splitter.split_documents(docs) | |
| # Create embeddings and store in vectordb | |
| embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME) | |
| vectordb = DocArrayInMemorySearch.from_documents(splits, embeddings) | |
| # Define retriever | |
| retriever = vectordb.as_retriever( | |
| search_type="mmr", search_kwargs={"k": 2, "fetch_k": 4} | |
| ) | |
| return retriever | |