Spaces:
Runtime error
Runtime error
Handle epub loader
Browse files- app.py +16 -9
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -2,18 +2,22 @@ import os
|
|
| 2 |
import tempfile
|
| 3 |
|
| 4 |
import streamlit as st
|
| 5 |
-
from langchain.callbacks.base import BaseCallbackHandler
|
| 6 |
from langchain.chains import ConversationalRetrievalChain
|
| 7 |
from langchain.chat_models import ChatOpenAI
|
| 8 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 9 |
from langchain.memory import ConversationBufferMemory
|
| 10 |
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
|
| 11 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 12 |
-
from langchain_community.document_loaders import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
from langchain_community.vectorstores import DocArrayInMemorySearch
|
| 14 |
|
|
|
|
| 15 |
from chat_profile import ChatProfileRoleEnum
|
| 16 |
-
from calback_handler import StreamHandler, PrintRetrievalHandler
|
| 17 |
|
| 18 |
# configs
|
| 19 |
LLM_MODEL_NAME = "gpt-3.5-turbo"
|
|
@@ -42,11 +46,11 @@ msgs = StreamlitChatMessageHistory()
|
|
| 42 |
|
| 43 |
|
| 44 |
@st.cache_resource(ttl="1h")
|
| 45 |
-
def configure_retriever(
|
| 46 |
# Read documents
|
| 47 |
docs = []
|
| 48 |
temp_dir = tempfile.TemporaryDirectory()
|
| 49 |
-
for file in
|
| 50 |
temp_filepath = os.path.join(temp_dir.name, file.name)
|
| 51 |
with open(temp_filepath, "wb") as f:
|
| 52 |
f.write(file.getvalue())
|
|
@@ -60,6 +64,8 @@ def configure_retriever(uploaded_files):
|
|
| 60 |
loader = Docx2txtLoader(temp_filepath)
|
| 61 |
elif extension == ".txt":
|
| 62 |
loader = TextLoader(temp_filepath)
|
|
|
|
|
|
|
| 63 |
else:
|
| 64 |
st.write("This document format is not supported!")
|
| 65 |
return None
|
|
@@ -86,10 +92,11 @@ def configure_retriever(uploaded_files):
|
|
| 86 |
with st.sidebar.expander("Documents"):
|
| 87 |
st.subheader("Files")
|
| 88 |
uploaded_files = st.file_uploader(
|
| 89 |
-
label="Select files",
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
|
| 92 |
-
|
| 93 |
with st.sidebar.expander("Setup"):
|
| 94 |
st.subheader("API Key")
|
| 95 |
openai_api_key = st.text_input("OpenAI API Key", type="password")
|
|
@@ -104,7 +111,7 @@ if not openai_api_key:
|
|
| 104 |
st.stop()
|
| 105 |
|
| 106 |
if uploaded_files:
|
| 107 |
-
|
| 108 |
|
| 109 |
memory = ConversationBufferMemory(
|
| 110 |
memory_key="chat_history", chat_memory=msgs, return_messages=True
|
|
@@ -119,7 +126,7 @@ if uploaded_files:
|
|
| 119 |
)
|
| 120 |
|
| 121 |
chain = ConversationalRetrievalChain.from_llm(
|
| 122 |
-
llm, retriever=
|
| 123 |
)
|
| 124 |
|
| 125 |
avatars = {
|
|
|
|
| 2 |
import tempfile
|
| 3 |
|
| 4 |
import streamlit as st
|
|
|
|
| 5 |
from langchain.chains import ConversationalRetrievalChain
|
| 6 |
from langchain.chat_models import ChatOpenAI
|
| 7 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 8 |
from langchain.memory import ConversationBufferMemory
|
| 9 |
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
|
| 10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 11 |
+
from langchain_community.document_loaders import (
|
| 12 |
+
Docx2txtLoader,
|
| 13 |
+
PyPDFLoader,
|
| 14 |
+
TextLoader,
|
| 15 |
+
UnstructuredEPubLoader,
|
| 16 |
+
)
|
| 17 |
from langchain_community.vectorstores import DocArrayInMemorySearch
|
| 18 |
|
| 19 |
+
from calback_handler import PrintRetrievalHandler, StreamHandler
|
| 20 |
from chat_profile import ChatProfileRoleEnum
|
|
|
|
| 21 |
|
| 22 |
# configs
|
| 23 |
LLM_MODEL_NAME = "gpt-3.5-turbo"
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
@st.cache_resource(ttl="1h")
|
| 49 |
+
def configure_retriever(files):
|
| 50 |
# Read documents
|
| 51 |
docs = []
|
| 52 |
temp_dir = tempfile.TemporaryDirectory()
|
| 53 |
+
for file in files:
|
| 54 |
temp_filepath = os.path.join(temp_dir.name, file.name)
|
| 55 |
with open(temp_filepath, "wb") as f:
|
| 56 |
f.write(file.getvalue())
|
|
|
|
| 64 |
loader = Docx2txtLoader(temp_filepath)
|
| 65 |
elif extension == ".txt":
|
| 66 |
loader = TextLoader(temp_filepath)
|
| 67 |
+
elif extension == ".epub":
|
| 68 |
+
loader = UnstructuredEPubLoader(temp_filepath)
|
| 69 |
else:
|
| 70 |
st.write("This document format is not supported!")
|
| 71 |
return None
|
|
|
|
| 92 |
with st.sidebar.expander("Documents"):
|
| 93 |
st.subheader("Files")
|
| 94 |
uploaded_files = st.file_uploader(
|
| 95 |
+
label="Select files",
|
| 96 |
+
type=["pdf", "txt", "docx", "epub"],
|
| 97 |
+
accept_multiple_files=True,
|
| 98 |
)
|
| 99 |
|
|
|
|
| 100 |
with st.sidebar.expander("Setup"):
|
| 101 |
st.subheader("API Key")
|
| 102 |
openai_api_key = st.text_input("OpenAI API Key", type="password")
|
|
|
|
| 111 |
st.stop()
|
| 112 |
|
| 113 |
if uploaded_files:
|
| 114 |
+
result_retriever = configure_retriever(uploaded_files)
|
| 115 |
|
| 116 |
memory = ConversationBufferMemory(
|
| 117 |
memory_key="chat_history", chat_memory=msgs, return_messages=True
|
|
|
|
| 126 |
)
|
| 127 |
|
| 128 |
chain = ConversationalRetrievalChain.from_llm(
|
| 129 |
+
llm, retriever=result_retriever, memory=memory, verbose=False
|
| 130 |
)
|
| 131 |
|
| 132 |
avatars = {
|
requirements.txt
CHANGED
|
@@ -6,4 +6,5 @@ streamlit
|
|
| 6 |
streamlit_chat
|
| 7 |
streamlit-extras
|
| 8 |
pypdf
|
| 9 |
-
docx2txt
|
|
|
|
|
|
| 6 |
streamlit_chat
|
| 7 |
streamlit-extras
|
| 8 |
pypdf
|
| 9 |
+
docx2txt
|
| 10 |
+
unstructured
|