Spaces:
Sleeping
Sleeping
shweaung
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,8 +3,11 @@ import requests
|
|
| 3 |
import io
|
| 4 |
import random
|
| 5 |
import os
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
from deep_translator import GoogleTranslator
|
|
|
|
|
|
|
| 8 |
|
| 9 |
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
| 10 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
|
@@ -23,19 +26,27 @@ article_text = """
|
|
| 23 |
</div>
|
| 24 |
"""
|
| 25 |
|
| 26 |
-
def query(lora_id, prompt, steps=28, cfg_scale=3.5, randomize_seed=True, seed=-1, width=1024, height=1024
|
| 27 |
-
if
|
| 28 |
-
return None
|
| 29 |
|
| 30 |
-
if
|
| 31 |
-
lora_id = "black-forest-labs/FLUX.1-dev"
|
| 32 |
|
| 33 |
key = random.randint(0, 999)
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
|
|
|
|
|
|
|
|
|
| 36 |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
|
|
|
| 37 |
|
| 38 |
-
#
|
| 39 |
if randomize_seed:
|
| 40 |
seed = random.randint(1, 4294967296)
|
| 41 |
|
|
@@ -45,12 +56,11 @@ def query(lora_id, prompt, steps=28, cfg_scale=3.5, randomize_seed=True, seed=-1
|
|
| 45 |
"cfg_scale": cfg_scale,
|
| 46 |
"seed": seed,
|
| 47 |
"parameters": {
|
| 48 |
-
"width": width,
|
| 49 |
-
"height": height
|
| 50 |
}
|
| 51 |
}
|
| 52 |
|
| 53 |
-
# Send the request and get the image data
|
| 54 |
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
| 55 |
if response.status_code != 200:
|
| 56 |
print(f"Error: Failed to get image. Response status: {response.status_code}")
|
|
@@ -60,20 +70,13 @@ def query(lora_id, prompt, steps=28, cfg_scale=3.5, randomize_seed=True, seed=-1
|
|
| 60 |
raise gr.Error(f"{response.status_code}")
|
| 61 |
|
| 62 |
try:
|
| 63 |
-
# Load and convert the image to the specified format (JPEG or PNG)
|
| 64 |
image_bytes = response.content
|
| 65 |
image = Image.open(io.BytesIO(image_bytes))
|
| 66 |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
| 67 |
-
|
| 68 |
-
img_byte_arr = io.BytesIO()
|
| 69 |
-
image.save(img_byte_arr, format=output_format)
|
| 70 |
-
img_byte_arr.seek(0)
|
| 71 |
-
|
| 72 |
-
# Prepare for Gradio's download
|
| 73 |
-
return image, seed, img_byte_arr
|
| 74 |
except Exception as e:
|
| 75 |
print(f"Error when trying to open the image: {e}")
|
| 76 |
-
return None
|
| 77 |
|
| 78 |
|
| 79 |
examples = [
|
|
@@ -109,28 +112,23 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
|
|
| 109 |
with gr.Row():
|
| 110 |
steps = gr.Slider(label="Sampling steps", value=28, minimum=1, maximum=100, step=1)
|
| 111 |
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
|
| 112 |
-
|
| 113 |
|
| 114 |
with gr.Row():
|
| 115 |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
| 116 |
with gr.Row():
|
| 117 |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
| 118 |
with gr.Row():
|
| 119 |
-
seed_output = gr.Textbox(label="Seed Used", show_copy_button=True, elem_id="seed-output")
|
| 120 |
-
with gr.Row():
|
| 121 |
-
download_button = gr.File(label="Download Image", elem_id="download-button")
|
| 122 |
|
| 123 |
gr.Markdown(article_text)
|
| 124 |
|
| 125 |
gr.Examples(
|
| 126 |
-
examples=examples,
|
| 127 |
-
inputs=[text_prompt],
|
| 128 |
)
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height, output_format], outputs=[image_output, seed_output, download_button])
|
| 134 |
-
download_button.change(download_image, inputs=[download_button], outputs=download_button)
|
| 135 |
|
| 136 |
app.launch(show_api=False, share=True)
|
|
|
|
| 3 |
import io
|
| 4 |
import random
|
| 5 |
import os
|
| 6 |
+
import time
|
| 7 |
from PIL import Image
|
| 8 |
from deep_translator import GoogleTranslator
|
| 9 |
+
import json
|
| 10 |
+
|
| 11 |
|
| 12 |
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
| 13 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
|
|
|
| 26 |
</div>
|
| 27 |
"""
|
| 28 |
|
| 29 |
+
def query(lora_id, prompt, steps=28, cfg_scale=3.5, randomize_seed=True, seed=-1, width=1024, height=1024):
|
| 30 |
+
if prompt == "" or prompt == None:
|
| 31 |
+
return None
|
| 32 |
|
| 33 |
+
if lora_id.strip() == "" or lora_id == None:
|
| 34 |
+
lora_id = "black-forest-labs/FLUX.1-dev"
|
| 35 |
|
| 36 |
key = random.randint(0, 999)
|
| 37 |
+
|
| 38 |
+
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
|
| 39 |
+
|
| 40 |
+
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
| 41 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
| 42 |
|
| 43 |
+
#prompt = GoogleTranslator(source='my', target='en').translate(prompt)
|
| 44 |
+
# print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
| 45 |
+
|
| 46 |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
| 47 |
+
# print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
| 48 |
|
| 49 |
+
# If seed is -1, generate a random seed and use it
|
| 50 |
if randomize_seed:
|
| 51 |
seed = random.randint(1, 4294967296)
|
| 52 |
|
|
|
|
| 56 |
"cfg_scale": cfg_scale,
|
| 57 |
"seed": seed,
|
| 58 |
"parameters": {
|
| 59 |
+
"width": width, # Pass the width to the API
|
| 60 |
+
"height": height # Pass the height to the API
|
| 61 |
}
|
| 62 |
}
|
| 63 |
|
|
|
|
| 64 |
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
| 65 |
if response.status_code != 200:
|
| 66 |
print(f"Error: Failed to get image. Response status: {response.status_code}")
|
|
|
|
| 70 |
raise gr.Error(f"{response.status_code}")
|
| 71 |
|
| 72 |
try:
|
|
|
|
| 73 |
image_bytes = response.content
|
| 74 |
image = Image.open(io.BytesIO(image_bytes))
|
| 75 |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
| 76 |
+
return image, seed, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
except Exception as e:
|
| 78 |
print(f"Error when trying to open the image: {e}")
|
| 79 |
+
return None
|
| 80 |
|
| 81 |
|
| 82 |
examples = [
|
|
|
|
| 112 |
with gr.Row():
|
| 113 |
steps = gr.Slider(label="Sampling steps", value=28, minimum=1, maximum=100, step=1)
|
| 114 |
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
|
| 115 |
+
# method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
| 116 |
|
| 117 |
with gr.Row():
|
| 118 |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
| 119 |
with gr.Row():
|
| 120 |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
| 121 |
with gr.Row():
|
| 122 |
+
seed_output = gr.Textbox(label="Seed Used", show_copy_button = True, elem_id="seed-output")
|
|
|
|
|
|
|
| 123 |
|
| 124 |
gr.Markdown(article_text)
|
| 125 |
|
| 126 |
gr.Examples(
|
| 127 |
+
examples = examples,
|
| 128 |
+
inputs = [text_prompt],
|
| 129 |
)
|
| 130 |
|
| 131 |
+
|
| 132 |
+
text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
app.launch(show_api=False, share=True)
|