Spaces:
Runtime error
Runtime error
| """Language model interface.""" | |
| import argparse | |
| from espnet.nets.scorer_interface import ScorerInterface | |
| from espnet.utils.dynamic_import import dynamic_import | |
| from espnet.utils.fill_missing_args import fill_missing_args | |
| class LMInterface(ScorerInterface): | |
| """LM Interface for ESPnet model implementation.""" | |
| def add_arguments(parser): | |
| """Add arguments to command line argument parser.""" | |
| return parser | |
| def build(cls, n_vocab: int, **kwargs): | |
| """Initialize this class with python-level args. | |
| Args: | |
| idim (int): The number of vocabulary. | |
| Returns: | |
| LMinterface: A new instance of LMInterface. | |
| """ | |
| # local import to avoid cyclic import in lm_train | |
| from espnet.bin.lm_train import get_parser | |
| def wrap(parser): | |
| return get_parser(parser, required=False) | |
| args = argparse.Namespace(**kwargs) | |
| args = fill_missing_args(args, wrap) | |
| args = fill_missing_args(args, cls.add_arguments) | |
| return cls(n_vocab, args) | |
| def forward(self, x, t): | |
| """Compute LM loss value from buffer sequences. | |
| Args: | |
| x (torch.Tensor): Input ids. (batch, len) | |
| t (torch.Tensor): Target ids. (batch, len) | |
| Returns: | |
| tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Tuple of | |
| loss to backward (scalar), | |
| negative log-likelihood of t: -log p(t) (scalar) and | |
| the number of elements in x (scalar) | |
| Notes: | |
| The last two return values are used | |
| in perplexity: p(t)^{-n} = exp(-log p(t) / n) | |
| """ | |
| raise NotImplementedError("forward method is not implemented") | |
| predefined_lms = { | |
| "pytorch": { | |
| "default": "espnet.nets.pytorch_backend.lm.default:DefaultRNNLM", | |
| "seq_rnn": "espnet.nets.pytorch_backend.lm.seq_rnn:SequentialRNNLM", | |
| "transformer": "espnet.nets.pytorch_backend.lm.transformer:TransformerLM", | |
| }, | |
| "chainer": {"default": "espnet.lm.chainer_backend.lm:DefaultRNNLM"}, | |
| } | |
| def dynamic_import_lm(module, backend): | |
| """Import LM class dynamically. | |
| Args: | |
| module (str): module_name:class_name or alias in `predefined_lms` | |
| backend (str): NN backend. e.g., pytorch, chainer | |
| Returns: | |
| type: LM class | |
| """ | |
| model_class = dynamic_import(module, predefined_lms.get(backend, dict())) | |
| assert issubclass( | |
| model_class, LMInterface | |
| ), f"{module} does not implement LMInterface" | |
| return model_class | |