Spaces:
Runtime error
Runtime error
| import math | |
| import torch.nn as nn | |
| import pdb | |
| from espnet.nets.pytorch_backend.transformer.convolution import Swish | |
| def conv3x3(in_planes, out_planes, stride=1): | |
| """conv3x3. | |
| :param in_planes: int, number of channels in the input sequence. | |
| :param out_planes: int, number of channels produced by the convolution. | |
| :param stride: int, size of the convolving kernel. | |
| """ | |
| return nn.Conv2d( | |
| in_planes, | |
| out_planes, | |
| kernel_size=3, | |
| stride=stride, | |
| padding=1, | |
| bias=False, | |
| ) | |
| def downsample_basic_block(inplanes, outplanes, stride): | |
| """downsample_basic_block. | |
| :param inplanes: int, number of channels in the input sequence. | |
| :param outplanes: int, number of channels produced by the convolution. | |
| :param stride: int, size of the convolving kernel. | |
| """ | |
| return nn.Sequential( | |
| nn.Conv2d( | |
| inplanes, | |
| outplanes, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(outplanes), | |
| ) | |
| class BasicBlock(nn.Module): | |
| expansion = 1 | |
| def __init__( | |
| self, | |
| inplanes, | |
| planes, | |
| stride=1, | |
| downsample=None, | |
| relu_type="swish", | |
| ): | |
| """__init__. | |
| :param inplanes: int, number of channels in the input sequence. | |
| :param planes: int, number of channels produced by the convolution. | |
| :param stride: int, size of the convolving kernel. | |
| :param downsample: boolean, if True, the temporal resolution is downsampled. | |
| :param relu_type: str, type of activation function. | |
| """ | |
| super(BasicBlock, self).__init__() | |
| assert relu_type in ["relu", "prelu", "swish"] | |
| self.conv1 = conv3x3(inplanes, planes, stride) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| if relu_type == "relu": | |
| self.relu1 = nn.ReLU(inplace=True) | |
| self.relu2 = nn.ReLU(inplace=True) | |
| elif relu_type == "prelu": | |
| self.relu1 = nn.PReLU(num_parameters=planes) | |
| self.relu2 = nn.PReLU(num_parameters=planes) | |
| elif relu_type == "swish": | |
| self.relu1 = Swish() | |
| self.relu2 = Swish() | |
| else: | |
| raise NotImplementedError | |
| # -------- | |
| self.conv2 = conv3x3(planes, planes) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| """forward. | |
| :param x: torch.Tensor, input tensor with input size (B, C, T, H, W). | |
| """ | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu1(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu2(out) | |
| return out | |
| class ResNet(nn.Module): | |
| def __init__( | |
| self, | |
| block, | |
| layers, | |
| relu_type="swish", | |
| ): | |
| super(ResNet, self).__init__() | |
| self.inplanes = 64 | |
| self.relu_type = relu_type | |
| self.downsample_block = downsample_basic_block | |
| self.layer1 = self._make_layer(block, 64, layers[0]) | |
| self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
| self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
| self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
| self.avgpool = nn.AdaptiveAvgPool2d(1) | |
| def _make_layer(self, block, planes, blocks, stride=1): | |
| """_make_layer. | |
| :param block: torch.nn.Module, class of blocks. | |
| :param planes: int, number of channels produced by the convolution. | |
| :param blocks: int, number of layers in a block. | |
| :param stride: int, size of the convolving kernel. | |
| """ | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = self.downsample_block( | |
| inplanes=self.inplanes, | |
| outplanes=planes*block.expansion, | |
| stride=stride, | |
| ) | |
| layers = [] | |
| layers.append( | |
| block( | |
| self.inplanes, | |
| planes, | |
| stride, | |
| downsample, | |
| relu_type=self.relu_type, | |
| ) | |
| ) | |
| self.inplanes = planes * block.expansion | |
| for i in range(1, blocks): | |
| layers.append( | |
| block( | |
| self.inplanes, | |
| planes, | |
| relu_type=self.relu_type, | |
| ) | |
| ) | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| """forward. | |
| :param x: torch.Tensor, input tensor with input size (B, C, T, H, W). | |
| """ | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.layer4(x) | |
| x = self.avgpool(x) | |
| x = x.view(x.size(0), -1) | |
| return x | |