Spaces:
Running
Running
File size: 3,415 Bytes
6d03eae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import streamlit as st
from phi.agent import Agent
from phi.model.google import Gemini
from phi.tools.duckduckgo import DuckDuckGo
from google.generativeai import upload_file,get_file
import google.generativeai as genai
import time
from pathlib import Path
import tempfile
from dotenv import load_dotenv
load_dotenv()
import os
API_KEY=os.getenv("GOOGLE_API_KEY")
if API_KEY:
genai.configure(api_key=API_KEY)
# Page configuration
st.set_page_config(
page_title="Multimodal AI Agent- Video Summarizer",
page_icon="π₯",
layout="wide"
)
st.title("Phidata Video AI Summarizer Agent π₯π€π¬")
st.header("Powered by Gemini 2.0 Flash Exp")
@st.cache_resource
def initialize_agent():
return Agent(
name="Video AI Summarizer",
model=Gemini(id="gemini-2.0-flash-exp"),
tools=[DuckDuckGo()],
markdown=True,
)
## Initialize the agent
multimodal_Agent=initialize_agent()
# File uploader
video_file = st.file_uploader(
"Upload a video file", type=['mp4', 'mov', 'avi'], help="Upload a video for AI analysis"
)
if video_file:
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video:
temp_video.write(video_file.read())
video_path = temp_video.name
st.video(video_path, format="video/mp4", start_time=0)
user_query = st.text_area(
"What insights are you seeking from the video?",
placeholder="Ask anything about the video content. The AI agent will analyze and gather additional context if needed.",
help="Provide specific questions or insights you want from the video."
)
if st.button("π Analyze Video", key="analyze_video_button"):
if not user_query:
st.warning("Please enter a question or insight to analyze the video.")
else:
try:
with st.spinner("Processing video and gathering insights..."):
# Upload and process video file
processed_video = upload_file(video_path)
while processed_video.state.name == "PROCESSING":
time.sleep(1)
processed_video = get_file(processed_video.name)
# Prompt generation for analysis
analysis_prompt = (
f"""
Analyze the uploaded video for content and context.
Respond to the following query using video insights and supplementary web research:
{user_query}
Provide a consized, user-friendly, and actionable response.
"""
)
# AI agent processing
response = multimodal_Agent.run(analysis_prompt, videos=[processed_video])
# Display the result
st.subheader("Analysis Result")
st.markdown(response.content)
except Exception as error:
st.error(f"An error occurred during analysis: {error}")
finally:
# Clean up temporary video file
Path(video_path).unlink(missing_ok=True)
else:
st.info("Upload a video file to begin analysis.")
# Customize text area height
st.markdown(
"""
<style>
.stTextArea textarea {
height: 100px;
}
</style>
""",
unsafe_allow_html=True
)
|