zmrl commited on
Commit
6a0f724
·
1 Parent(s): cc351b3

add initial implementation of T5 Mini Reply model with Gradio interface and requirements

Browse files
Files changed (2) hide show
  1. app.py +41 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
3
+
4
+ # Modelo leve que roda em CPU (bom p/ demo). Se preferir PT “de verdade”, troque por:
5
+ # MODEL_ID = "unicamp-dl/ptt5-small-portuguese-vocab"
6
+ MODEL_ID = "google/flan-t5-small"
7
+
8
+ tok = AutoTokenizer.from_pretrained(MODEL_ID)
9
+ mdl = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID)
10
+
11
+ pipe = pipeline(
12
+ "text2text-generation",
13
+ model=mdl,
14
+ tokenizer=tok
15
+ )
16
+
17
+ def gen(prompt: str):
18
+ if not prompt or not prompt.strip():
19
+ return ""
20
+ out = pipe(
21
+ prompt,
22
+ max_new_tokens=120,
23
+ do_sample=True,
24
+ top_p=0.9,
25
+ temperature=0.7,
26
+ repetition_penalty=1.15,
27
+ num_return_sequences=1,
28
+ )
29
+ return out[0]["generated_text"]
30
+
31
+ # Gradio já expõe /api/predict automaticamente
32
+ demo = gr.Interface(
33
+ fn=gen,
34
+ inputs=gr.Textbox(label="Prompt"),
35
+ outputs=gr.Textbox(label="Saída"),
36
+ title="T5 Mini Reply",
37
+ description="Geração de respostas curtas (CPU)."
38
+ )
39
+
40
+ if __name__ == "__main__":
41
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ transformers==4.43.3
2
+ sentencepiece==0.2.0
3
+ accelerate==0.33.0