feat: add training log
Browse files- training.log +251 -0
training.log
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2025-05-08 16:35:44,100 ----------------------------------------------------------------------------------------------------
|
| 2 |
+
2025-05-08 16:35:44,100 Model: "SequenceTagger(
|
| 3 |
+
(embeddings): TransformerWordEmbeddings(
|
| 4 |
+
(model): ModernBertModel(
|
| 5 |
+
(embeddings): ModernBertEmbeddings(
|
| 6 |
+
(tok_embeddings): Embedding(50369, 1024, padding_idx=50283)
|
| 7 |
+
(norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 8 |
+
(drop): Dropout(p=0.0, inplace=False)
|
| 9 |
+
)
|
| 10 |
+
(layers): ModuleList(
|
| 11 |
+
(0): ModernBertEncoderLayer(
|
| 12 |
+
(attn_norm): Identity()
|
| 13 |
+
(attn): ModernBertAttention(
|
| 14 |
+
(Wqkv): Linear(in_features=1024, out_features=3072, bias=False)
|
| 15 |
+
(rotary_emb): ModernBertRotaryEmbedding()
|
| 16 |
+
(Wo): Linear(in_features=1024, out_features=1024, bias=False)
|
| 17 |
+
(out_drop): Identity()
|
| 18 |
+
)
|
| 19 |
+
(mlp_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 20 |
+
(mlp): ModernBertMLP(
|
| 21 |
+
(Wi): Linear(in_features=1024, out_features=5248, bias=False)
|
| 22 |
+
(act): GELUActivation()
|
| 23 |
+
(drop): Dropout(p=0.0, inplace=False)
|
| 24 |
+
(Wo): Linear(in_features=2624, out_features=1024, bias=False)
|
| 25 |
+
)
|
| 26 |
+
)
|
| 27 |
+
(1-27): 27 x ModernBertEncoderLayer(
|
| 28 |
+
(attn_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 29 |
+
(attn): ModernBertAttention(
|
| 30 |
+
(Wqkv): Linear(in_features=1024, out_features=3072, bias=False)
|
| 31 |
+
(rotary_emb): ModernBertRotaryEmbedding()
|
| 32 |
+
(Wo): Linear(in_features=1024, out_features=1024, bias=False)
|
| 33 |
+
(out_drop): Identity()
|
| 34 |
+
)
|
| 35 |
+
(mlp_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 36 |
+
(mlp): ModernBertMLP(
|
| 37 |
+
(Wi): Linear(in_features=1024, out_features=5248, bias=False)
|
| 38 |
+
(act): GELUActivation()
|
| 39 |
+
(drop): Dropout(p=0.0, inplace=False)
|
| 40 |
+
(Wo): Linear(in_features=2624, out_features=1024, bias=False)
|
| 41 |
+
)
|
| 42 |
+
)
|
| 43 |
+
)
|
| 44 |
+
(final_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 45 |
+
)
|
| 46 |
+
)
|
| 47 |
+
(locked_dropout): LockedDropout(p=0.5)
|
| 48 |
+
(linear): Linear(in_features=2048, out_features=17, bias=True)
|
| 49 |
+
(loss_function): CrossEntropyLoss()
|
| 50 |
+
)"
|
| 51 |
+
2025-05-08 16:35:44,100 ----------------------------------------------------------------------------------------------------
|
| 52 |
+
2025-05-08 16:35:44,100 MultiCorpus: 14987 train + 3466 dev + 3684 test sentences
|
| 53 |
+
- CONLL_03_ENGLISH Corpus: 14987 train + 3466 dev + 3684 test sentences - /home/stefan/.flair/datasets/conll_03_english
|
| 54 |
+
2025-05-08 16:35:44,100 ----------------------------------------------------------------------------------------------------
|
| 55 |
+
2025-05-08 16:35:44,100 Train: 14987 sentences
|
| 56 |
+
2025-05-08 16:35:44,100 (train_with_dev=False, train_with_test=False)
|
| 57 |
+
2025-05-08 16:35:44,100 ----------------------------------------------------------------------------------------------------
|
| 58 |
+
2025-05-08 16:35:44,100 Training Params:
|
| 59 |
+
2025-05-08 16:35:44,100 - optimizer: "<class 'torch.optim.adamw.AdamW'>"
|
| 60 |
+
2025-05-08 16:35:44,100 - learning_rate: "2e-05"
|
| 61 |
+
2025-05-08 16:35:44,100 - mini_batch_size: "16"
|
| 62 |
+
2025-05-08 16:35:44,100 - max_epochs: "10"
|
| 63 |
+
2025-05-08 16:35:44,100 - shuffle: "True"
|
| 64 |
+
2025-05-08 16:35:44,100 ----------------------------------------------------------------------------------------------------
|
| 65 |
+
2025-05-08 16:35:44,100 Plugins:
|
| 66 |
+
2025-05-08 16:35:44,100 - TensorboardLogger
|
| 67 |
+
2025-05-08 16:35:44,100 - LinearScheduler | warmup_fraction: '0.1'
|
| 68 |
+
2025-05-08 16:35:44,100 ----------------------------------------------------------------------------------------------------
|
| 69 |
+
2025-05-08 16:35:44,100 Final evaluation on model from best epoch (best-model.pt)
|
| 70 |
+
2025-05-08 16:35:44,100 - metric: "('micro avg', 'f1-score')"
|
| 71 |
+
2025-05-08 16:35:44,100 ----------------------------------------------------------------------------------------------------
|
| 72 |
+
2025-05-08 16:35:44,100 Computation:
|
| 73 |
+
2025-05-08 16:35:44,100 - compute on device: cuda:0
|
| 74 |
+
2025-05-08 16:35:44,100 - embedding storage: none
|
| 75 |
+
2025-05-08 16:35:44,100 ----------------------------------------------------------------------------------------------------
|
| 76 |
+
2025-05-08 16:35:44,100 Model training base path: "flair-ner-conll03_english-modern_bert_large_tokenizer_fix-bs16-e10-cs0-lr2e-05-2"
|
| 77 |
+
2025-05-08 16:35:44,100 ----------------------------------------------------------------------------------------------------
|
| 78 |
+
2025-05-08 16:35:44,100 ----------------------------------------------------------------------------------------------------
|
| 79 |
+
2025-05-08 16:35:44,100 Logging anything other than scalars to TensorBoard is currently not supported.
|
| 80 |
+
2025-05-08 16:35:56,453 epoch 1 - iter 93/937 - loss 51.00117641 - time (sec): 12.35 - samples/sec: 1732.91 - lr: 0.000002 - momentum: 0.000000
|
| 81 |
+
2025-05-08 16:36:08,727 epoch 1 - iter 186/937 - loss 39.31915124 - time (sec): 24.63 - samples/sec: 1689.29 - lr: 0.000004 - momentum: 0.000000
|
| 82 |
+
2025-05-08 16:36:21,012 epoch 1 - iter 279/937 - loss 28.34790128 - time (sec): 36.91 - samples/sec: 1696.57 - lr: 0.000006 - momentum: 0.000000
|
| 83 |
+
2025-05-08 16:36:33,294 epoch 1 - iter 372/937 - loss 21.50534985 - time (sec): 49.19 - samples/sec: 1692.10 - lr: 0.000008 - momentum: 0.000000
|
| 84 |
+
2025-05-08 16:36:45,533 epoch 1 - iter 465/937 - loss 17.43941279 - time (sec): 61.43 - samples/sec: 1676.80 - lr: 0.000010 - momentum: 0.000000
|
| 85 |
+
2025-05-08 16:36:57,843 epoch 1 - iter 558/937 - loss 14.61276887 - time (sec): 73.74 - samples/sec: 1671.44 - lr: 0.000012 - momentum: 0.000000
|
| 86 |
+
2025-05-08 16:37:10,132 epoch 1 - iter 651/937 - loss 12.61916178 - time (sec): 86.03 - samples/sec: 1664.38 - lr: 0.000014 - momentum: 0.000000
|
| 87 |
+
2025-05-08 16:37:22,323 epoch 1 - iter 744/937 - loss 11.09955475 - time (sec): 98.22 - samples/sec: 1660.09 - lr: 0.000016 - momentum: 0.000000
|
| 88 |
+
2025-05-08 16:37:34,541 epoch 1 - iter 837/937 - loss 9.91430791 - time (sec): 110.44 - samples/sec: 1656.84 - lr: 0.000018 - momentum: 0.000000
|
| 89 |
+
2025-05-08 16:37:46,710 epoch 1 - iter 930/937 - loss 8.93883090 - time (sec): 122.61 - samples/sec: 1657.42 - lr: 0.000020 - momentum: 0.000000
|
| 90 |
+
2025-05-08 16:37:47,602 ----------------------------------------------------------------------------------------------------
|
| 91 |
+
2025-05-08 16:37:47,602 EPOCH 1 done: loss 8.8805 - lr: 0.000020
|
| 92 |
+
2025-05-08 16:37:54,144 DEV : loss 0.1118580624461174 - f1-score (micro avg) 0.9036
|
| 93 |
+
2025-05-08 16:37:54,170 saving best model
|
| 94 |
+
2025-05-08 16:37:54,784 ----------------------------------------------------------------------------------------------------
|
| 95 |
+
2025-05-08 16:38:06,997 epoch 2 - iter 93/937 - loss 0.11137172 - time (sec): 12.21 - samples/sec: 1652.27 - lr: 0.000020 - momentum: 0.000000
|
| 96 |
+
2025-05-08 16:38:19,287 epoch 2 - iter 186/937 - loss 0.11052976 - time (sec): 24.50 - samples/sec: 1627.98 - lr: 0.000020 - momentum: 0.000000
|
| 97 |
+
2025-05-08 16:38:31,513 epoch 2 - iter 279/937 - loss 0.10145703 - time (sec): 36.73 - samples/sec: 1641.78 - lr: 0.000019 - momentum: 0.000000
|
| 98 |
+
2025-05-08 16:38:43,868 epoch 2 - iter 372/937 - loss 0.09382547 - time (sec): 49.08 - samples/sec: 1653.09 - lr: 0.000019 - momentum: 0.000000
|
| 99 |
+
2025-05-08 16:38:56,121 epoch 2 - iter 465/937 - loss 0.09283270 - time (sec): 61.34 - samples/sec: 1656.97 - lr: 0.000019 - momentum: 0.000000
|
| 100 |
+
2025-05-08 16:39:08,413 epoch 2 - iter 558/937 - loss 0.09469460 - time (sec): 73.63 - samples/sec: 1657.89 - lr: 0.000019 - momentum: 0.000000
|
| 101 |
+
2025-05-08 16:39:20,753 epoch 2 - iter 651/937 - loss 0.09219174 - time (sec): 85.97 - samples/sec: 1655.83 - lr: 0.000018 - momentum: 0.000000
|
| 102 |
+
2025-05-08 16:39:33,056 epoch 2 - iter 744/937 - loss 0.09000350 - time (sec): 98.27 - samples/sec: 1655.73 - lr: 0.000018 - momentum: 0.000000
|
| 103 |
+
2025-05-08 16:39:45,277 epoch 2 - iter 837/937 - loss 0.09094705 - time (sec): 110.49 - samples/sec: 1651.81 - lr: 0.000018 - momentum: 0.000000
|
| 104 |
+
2025-05-08 16:39:57,613 epoch 2 - iter 930/937 - loss 0.08852163 - time (sec): 122.83 - samples/sec: 1653.86 - lr: 0.000018 - momentum: 0.000000
|
| 105 |
+
2025-05-08 16:39:58,500 ----------------------------------------------------------------------------------------------------
|
| 106 |
+
2025-05-08 16:39:58,501 EPOCH 2 done: loss 0.0885 - lr: 0.000018
|
| 107 |
+
2025-05-08 16:40:03,946 DEV : loss 0.06839137524366379 - f1-score (micro avg) 0.9372
|
| 108 |
+
2025-05-08 16:40:03,971 saving best model
|
| 109 |
+
2025-05-08 16:40:04,951 ----------------------------------------------------------------------------------------------------
|
| 110 |
+
2025-05-08 16:40:17,146 epoch 3 - iter 93/937 - loss 0.04928881 - time (sec): 12.19 - samples/sec: 1647.64 - lr: 0.000018 - momentum: 0.000000
|
| 111 |
+
2025-05-08 16:40:29,461 epoch 3 - iter 186/937 - loss 0.04589421 - time (sec): 24.51 - samples/sec: 1663.15 - lr: 0.000017 - momentum: 0.000000
|
| 112 |
+
2025-05-08 16:40:41,705 epoch 3 - iter 279/937 - loss 0.04343733 - time (sec): 36.75 - samples/sec: 1646.12 - lr: 0.000017 - momentum: 0.000000
|
| 113 |
+
2025-05-08 16:40:53,964 epoch 3 - iter 372/937 - loss 0.04578370 - time (sec): 49.01 - samples/sec: 1650.85 - lr: 0.000017 - momentum: 0.000000
|
| 114 |
+
2025-05-08 16:41:06,206 epoch 3 - iter 465/937 - loss 0.04201880 - time (sec): 61.25 - samples/sec: 1646.44 - lr: 0.000017 - momentum: 0.000000
|
| 115 |
+
2025-05-08 16:41:18,565 epoch 3 - iter 558/937 - loss 0.04253207 - time (sec): 73.61 - samples/sec: 1648.62 - lr: 0.000016 - momentum: 0.000000
|
| 116 |
+
2025-05-08 16:41:30,845 epoch 3 - iter 651/937 - loss 0.04646610 - time (sec): 85.89 - samples/sec: 1646.48 - lr: 0.000016 - momentum: 0.000000
|
| 117 |
+
2025-05-08 16:41:43,169 epoch 3 - iter 744/937 - loss 0.04955133 - time (sec): 98.22 - samples/sec: 1653.16 - lr: 0.000016 - momentum: 0.000000
|
| 118 |
+
2025-05-08 16:41:55,483 epoch 3 - iter 837/937 - loss 0.04703390 - time (sec): 110.53 - samples/sec: 1656.33 - lr: 0.000016 - momentum: 0.000000
|
| 119 |
+
2025-05-08 16:42:07,683 epoch 3 - iter 930/937 - loss 0.04786307 - time (sec): 122.73 - samples/sec: 1654.62 - lr: 0.000016 - momentum: 0.000000
|
| 120 |
+
2025-05-08 16:42:08,556 ----------------------------------------------------------------------------------------------------
|
| 121 |
+
2025-05-08 16:42:08,556 EPOCH 3 done: loss 0.0477 - lr: 0.000016
|
| 122 |
+
2025-05-08 16:42:14,012 DEV : loss 0.07307213544845581 - f1-score (micro avg) 0.9533
|
| 123 |
+
2025-05-08 16:42:14,038 saving best model
|
| 124 |
+
2025-05-08 16:42:15,034 ----------------------------------------------------------------------------------------------------
|
| 125 |
+
2025-05-08 16:42:28,642 epoch 4 - iter 93/937 - loss 0.01898962 - time (sec): 13.61 - samples/sec: 1568.87 - lr: 0.000015 - momentum: 0.000000
|
| 126 |
+
2025-05-08 16:42:40,917 epoch 4 - iter 186/937 - loss 0.02010164 - time (sec): 25.88 - samples/sec: 1612.31 - lr: 0.000015 - momentum: 0.000000
|
| 127 |
+
2025-05-08 16:42:53,288 epoch 4 - iter 279/937 - loss 0.02142412 - time (sec): 38.25 - samples/sec: 1606.07 - lr: 0.000015 - momentum: 0.000000
|
| 128 |
+
2025-05-08 16:43:05,506 epoch 4 - iter 372/937 - loss 0.02282148 - time (sec): 50.47 - samples/sec: 1613.79 - lr: 0.000015 - momentum: 0.000000
|
| 129 |
+
2025-05-08 16:43:17,846 epoch 4 - iter 465/937 - loss 0.02263261 - time (sec): 62.81 - samples/sec: 1632.46 - lr: 0.000014 - momentum: 0.000000
|
| 130 |
+
2025-05-08 16:43:30,220 epoch 4 - iter 558/937 - loss 0.02330124 - time (sec): 75.18 - samples/sec: 1637.30 - lr: 0.000014 - momentum: 0.000000
|
| 131 |
+
2025-05-08 16:43:42,488 epoch 4 - iter 651/937 - loss 0.02443078 - time (sec): 87.45 - samples/sec: 1632.91 - lr: 0.000014 - momentum: 0.000000
|
| 132 |
+
2025-05-08 16:43:54,794 epoch 4 - iter 744/937 - loss 0.02445322 - time (sec): 99.76 - samples/sec: 1637.75 - lr: 0.000014 - momentum: 0.000000
|
| 133 |
+
2025-05-08 16:44:06,909 epoch 4 - iter 837/937 - loss 0.02507178 - time (sec): 111.87 - samples/sec: 1633.75 - lr: 0.000014 - momentum: 0.000000
|
| 134 |
+
2025-05-08 16:44:19,212 epoch 4 - iter 930/937 - loss 0.02554490 - time (sec): 124.18 - samples/sec: 1634.63 - lr: 0.000013 - momentum: 0.000000
|
| 135 |
+
2025-05-08 16:44:20,092 ----------------------------------------------------------------------------------------------------
|
| 136 |
+
2025-05-08 16:44:20,092 EPOCH 4 done: loss 0.0255 - lr: 0.000013
|
| 137 |
+
2025-05-08 16:44:25,557 DEV : loss 0.09235326200723648 - f1-score (micro avg) 0.9594
|
| 138 |
+
2025-05-08 16:44:25,582 saving best model
|
| 139 |
+
2025-05-08 16:44:26,579 ----------------------------------------------------------------------------------------------------
|
| 140 |
+
2025-05-08 16:44:38,913 epoch 5 - iter 93/937 - loss 0.01416651 - time (sec): 12.33 - samples/sec: 1603.37 - lr: 0.000013 - momentum: 0.000000
|
| 141 |
+
2025-05-08 16:44:51,263 epoch 5 - iter 186/937 - loss 0.01363371 - time (sec): 24.68 - samples/sec: 1650.67 - lr: 0.000013 - momentum: 0.000000
|
| 142 |
+
2025-05-08 16:45:03,521 epoch 5 - iter 279/937 - loss 0.01315713 - time (sec): 36.94 - samples/sec: 1650.89 - lr: 0.000013 - momentum: 0.000000
|
| 143 |
+
2025-05-08 16:45:15,869 epoch 5 - iter 372/937 - loss 0.01589097 - time (sec): 49.29 - samples/sec: 1657.14 - lr: 0.000012 - momentum: 0.000000
|
| 144 |
+
2025-05-08 16:45:28,072 epoch 5 - iter 465/937 - loss 0.01531867 - time (sec): 61.49 - samples/sec: 1651.82 - lr: 0.000012 - momentum: 0.000000
|
| 145 |
+
2025-05-08 16:45:40,485 epoch 5 - iter 558/937 - loss 0.01951086 - time (sec): 73.91 - samples/sec: 1646.68 - lr: 0.000012 - momentum: 0.000000
|
| 146 |
+
2025-05-08 16:45:52,827 epoch 5 - iter 651/937 - loss 0.01969603 - time (sec): 86.25 - samples/sec: 1652.73 - lr: 0.000012 - momentum: 0.000000
|
| 147 |
+
2025-05-08 16:46:05,052 epoch 5 - iter 744/937 - loss 0.01837435 - time (sec): 98.47 - samples/sec: 1650.35 - lr: 0.000012 - momentum: 0.000000
|
| 148 |
+
2025-05-08 16:46:17,313 epoch 5 - iter 837/937 - loss 0.01937513 - time (sec): 110.73 - samples/sec: 1652.26 - lr: 0.000011 - momentum: 0.000000
|
| 149 |
+
2025-05-08 16:46:29,551 epoch 5 - iter 930/937 - loss 0.01967155 - time (sec): 122.97 - samples/sec: 1651.51 - lr: 0.000011 - momentum: 0.000000
|
| 150 |
+
2025-05-08 16:46:30,427 ----------------------------------------------------------------------------------------------------
|
| 151 |
+
2025-05-08 16:46:30,427 EPOCH 5 done: loss 0.0196 - lr: 0.000011
|
| 152 |
+
2025-05-08 16:46:35,889 DEV : loss 0.08506825566291809 - f1-score (micro avg) 0.9651
|
| 153 |
+
2025-05-08 16:46:35,914 saving best model
|
| 154 |
+
2025-05-08 16:46:36,899 ----------------------------------------------------------------------------------------------------
|
| 155 |
+
2025-05-08 16:46:49,267 epoch 6 - iter 93/937 - loss 0.00097797 - time (sec): 12.37 - samples/sec: 1688.57 - lr: 0.000011 - momentum: 0.000000
|
| 156 |
+
2025-05-08 16:47:01,644 epoch 6 - iter 186/937 - loss 0.00406677 - time (sec): 24.74 - samples/sec: 1655.65 - lr: 0.000011 - momentum: 0.000000
|
| 157 |
+
2025-05-08 16:47:15,115 epoch 6 - iter 279/937 - loss 0.00554206 - time (sec): 38.22 - samples/sec: 1619.79 - lr: 0.000010 - momentum: 0.000000
|
| 158 |
+
2025-05-08 16:47:27,338 epoch 6 - iter 372/937 - loss 0.00611831 - time (sec): 50.44 - samples/sec: 1622.06 - lr: 0.000010 - momentum: 0.000000
|
| 159 |
+
2025-05-08 16:47:39,647 epoch 6 - iter 465/937 - loss 0.00675677 - time (sec): 62.75 - samples/sec: 1629.17 - lr: 0.000010 - momentum: 0.000000
|
| 160 |
+
2025-05-08 16:47:51,891 epoch 6 - iter 558/937 - loss 0.00685979 - time (sec): 74.99 - samples/sec: 1632.98 - lr: 0.000010 - momentum: 0.000000
|
| 161 |
+
2025-05-08 16:48:04,124 epoch 6 - iter 651/937 - loss 0.00811317 - time (sec): 87.22 - samples/sec: 1624.14 - lr: 0.000010 - momentum: 0.000000
|
| 162 |
+
2025-05-08 16:48:16,545 epoch 6 - iter 744/937 - loss 0.00856449 - time (sec): 99.64 - samples/sec: 1631.43 - lr: 0.000009 - momentum: 0.000000
|
| 163 |
+
2025-05-08 16:48:28,801 epoch 6 - iter 837/937 - loss 0.00890904 - time (sec): 111.90 - samples/sec: 1637.56 - lr: 0.000009 - momentum: 0.000000
|
| 164 |
+
2025-05-08 16:48:41,002 epoch 6 - iter 930/937 - loss 0.00869569 - time (sec): 124.10 - samples/sec: 1637.91 - lr: 0.000009 - momentum: 0.000000
|
| 165 |
+
2025-05-08 16:48:41,887 ----------------------------------------------------------------------------------------------------
|
| 166 |
+
2025-05-08 16:48:41,887 EPOCH 6 done: loss 0.0087 - lr: 0.000009
|
| 167 |
+
2025-05-08 16:48:47,351 DEV : loss 0.1142197698354721 - f1-score (micro avg) 0.9642
|
| 168 |
+
2025-05-08 16:48:47,377 ----------------------------------------------------------------------------------------------------
|
| 169 |
+
2025-05-08 16:48:59,721 epoch 7 - iter 93/937 - loss 0.00487326 - time (sec): 12.34 - samples/sec: 1630.63 - lr: 0.000009 - momentum: 0.000000
|
| 170 |
+
2025-05-08 16:49:11,966 epoch 7 - iter 186/937 - loss 0.00628660 - time (sec): 24.59 - samples/sec: 1654.42 - lr: 0.000008 - momentum: 0.000000
|
| 171 |
+
2025-05-08 16:49:24,089 epoch 7 - iter 279/937 - loss 0.00580646 - time (sec): 36.71 - samples/sec: 1636.76 - lr: 0.000008 - momentum: 0.000000
|
| 172 |
+
2025-05-08 16:49:36,346 epoch 7 - iter 372/937 - loss 0.00641392 - time (sec): 48.97 - samples/sec: 1647.65 - lr: 0.000008 - momentum: 0.000000
|
| 173 |
+
2025-05-08 16:49:48,730 epoch 7 - iter 465/937 - loss 0.00541592 - time (sec): 61.35 - samples/sec: 1649.42 - lr: 0.000008 - momentum: 0.000000
|
| 174 |
+
2025-05-08 16:50:01,050 epoch 7 - iter 558/937 - loss 0.00500581 - time (sec): 73.67 - samples/sec: 1656.15 - lr: 0.000008 - momentum: 0.000000
|
| 175 |
+
2025-05-08 16:50:13,357 epoch 7 - iter 651/937 - loss 0.00504434 - time (sec): 85.98 - samples/sec: 1645.32 - lr: 0.000007 - momentum: 0.000000
|
| 176 |
+
2025-05-08 16:50:25,648 epoch 7 - iter 744/937 - loss 0.00508162 - time (sec): 98.27 - samples/sec: 1649.88 - lr: 0.000007 - momentum: 0.000000
|
| 177 |
+
2025-05-08 16:50:37,948 epoch 7 - iter 837/937 - loss 0.00514329 - time (sec): 110.57 - samples/sec: 1653.64 - lr: 0.000007 - momentum: 0.000000
|
| 178 |
+
2025-05-08 16:50:50,233 epoch 7 - iter 930/937 - loss 0.00507451 - time (sec): 122.86 - samples/sec: 1654.76 - lr: 0.000007 - momentum: 0.000000
|
| 179 |
+
2025-05-08 16:50:51,087 ----------------------------------------------------------------------------------------------------
|
| 180 |
+
2025-05-08 16:50:51,087 EPOCH 7 done: loss 0.0052 - lr: 0.000007
|
| 181 |
+
2025-05-08 16:50:56,556 DEV : loss 0.13016767799854279 - f1-score (micro avg) 0.9601
|
| 182 |
+
2025-05-08 16:50:56,581 ----------------------------------------------------------------------------------------------------
|
| 183 |
+
2025-05-08 16:51:08,853 epoch 8 - iter 93/937 - loss 0.00129312 - time (sec): 12.27 - samples/sec: 1665.82 - lr: 0.000006 - momentum: 0.000000
|
| 184 |
+
2025-05-08 16:51:21,108 epoch 8 - iter 186/937 - loss 0.00142083 - time (sec): 24.53 - samples/sec: 1627.81 - lr: 0.000006 - momentum: 0.000000
|
| 185 |
+
2025-05-08 16:51:33,398 epoch 8 - iter 279/937 - loss 0.00195167 - time (sec): 36.82 - samples/sec: 1628.48 - lr: 0.000006 - momentum: 0.000000
|
| 186 |
+
2025-05-08 16:51:47,081 epoch 8 - iter 372/937 - loss 0.00191288 - time (sec): 50.50 - samples/sec: 1599.88 - lr: 0.000006 - momentum: 0.000000
|
| 187 |
+
2025-05-08 16:51:59,448 epoch 8 - iter 465/937 - loss 0.00166481 - time (sec): 62.87 - samples/sec: 1610.97 - lr: 0.000006 - momentum: 0.000000
|
| 188 |
+
2025-05-08 16:52:11,719 epoch 8 - iter 558/937 - loss 0.00161414 - time (sec): 75.14 - samples/sec: 1617.95 - lr: 0.000005 - momentum: 0.000000
|
| 189 |
+
2025-05-08 16:52:23,970 epoch 8 - iter 651/937 - loss 0.00157594 - time (sec): 87.39 - samples/sec: 1625.93 - lr: 0.000005 - momentum: 0.000000
|
| 190 |
+
2025-05-08 16:52:36,105 epoch 8 - iter 744/937 - loss 0.00154393 - time (sec): 99.52 - samples/sec: 1628.32 - lr: 0.000005 - momentum: 0.000000
|
| 191 |
+
2025-05-08 16:52:48,417 epoch 8 - iter 837/937 - loss 0.00203973 - time (sec): 111.83 - samples/sec: 1631.67 - lr: 0.000005 - momentum: 0.000000
|
| 192 |
+
2025-05-08 16:53:00,806 epoch 8 - iter 930/937 - loss 0.00201068 - time (sec): 124.22 - samples/sec: 1635.01 - lr: 0.000004 - momentum: 0.000000
|
| 193 |
+
2025-05-08 16:53:01,700 ----------------------------------------------------------------------------------------------------
|
| 194 |
+
2025-05-08 16:53:01,700 EPOCH 8 done: loss 0.0020 - lr: 0.000004
|
| 195 |
+
2025-05-08 16:53:07,171 DEV : loss 0.13071465492248535 - f1-score (micro avg) 0.963
|
| 196 |
+
2025-05-08 16:53:07,196 ----------------------------------------------------------------------------------------------------
|
| 197 |
+
2025-05-08 16:53:19,384 epoch 9 - iter 93/937 - loss 0.00241956 - time (sec): 12.19 - samples/sec: 1618.47 - lr: 0.000004 - momentum: 0.000000
|
| 198 |
+
2025-05-08 16:53:31,629 epoch 9 - iter 186/937 - loss 0.00180043 - time (sec): 24.43 - samples/sec: 1619.30 - lr: 0.000004 - momentum: 0.000000
|
| 199 |
+
2025-05-08 16:53:43,993 epoch 9 - iter 279/937 - loss 0.00146007 - time (sec): 36.80 - samples/sec: 1610.43 - lr: 0.000004 - momentum: 0.000000
|
| 200 |
+
2025-05-08 16:53:56,261 epoch 9 - iter 372/937 - loss 0.00125696 - time (sec): 49.06 - samples/sec: 1630.15 - lr: 0.000004 - momentum: 0.000000
|
| 201 |
+
2025-05-08 16:54:08,611 epoch 9 - iter 465/937 - loss 0.00108053 - time (sec): 61.41 - samples/sec: 1652.78 - lr: 0.000003 - momentum: 0.000000
|
| 202 |
+
2025-05-08 16:54:20,898 epoch 9 - iter 558/937 - loss 0.00138047 - time (sec): 73.70 - samples/sec: 1649.28 - lr: 0.000003 - momentum: 0.000000
|
| 203 |
+
2025-05-08 16:54:33,205 epoch 9 - iter 651/937 - loss 0.00118774 - time (sec): 86.01 - samples/sec: 1649.73 - lr: 0.000003 - momentum: 0.000000
|
| 204 |
+
2025-05-08 16:54:45,518 epoch 9 - iter 744/937 - loss 0.00108115 - time (sec): 98.32 - samples/sec: 1655.74 - lr: 0.000003 - momentum: 0.000000
|
| 205 |
+
2025-05-08 16:54:57,805 epoch 9 - iter 837/937 - loss 0.00100400 - time (sec): 110.61 - samples/sec: 1653.22 - lr: 0.000002 - momentum: 0.000000
|
| 206 |
+
2025-05-08 16:55:10,050 epoch 9 - iter 930/937 - loss 0.00119770 - time (sec): 122.85 - samples/sec: 1652.52 - lr: 0.000002 - momentum: 0.000000
|
| 207 |
+
2025-05-08 16:55:10,937 ----------------------------------------------------------------------------------------------------
|
| 208 |
+
2025-05-08 16:55:10,937 EPOCH 9 done: loss 0.0012 - lr: 0.000002
|
| 209 |
+
2025-05-08 16:55:16,406 DEV : loss 0.13402138650417328 - f1-score (micro avg) 0.9658
|
| 210 |
+
2025-05-08 16:55:16,432 saving best model
|
| 211 |
+
2025-05-08 16:55:17,424 ----------------------------------------------------------------------------------------------------
|
| 212 |
+
2025-05-08 16:55:29,704 epoch 10 - iter 93/937 - loss 0.00164854 - time (sec): 12.28 - samples/sec: 1574.90 - lr: 0.000002 - momentum: 0.000000
|
| 213 |
+
2025-05-08 16:55:41,942 epoch 10 - iter 186/937 - loss 0.00084318 - time (sec): 24.52 - samples/sec: 1599.16 - lr: 0.000002 - momentum: 0.000000
|
| 214 |
+
2025-05-08 16:55:54,292 epoch 10 - iter 279/937 - loss 0.00062474 - time (sec): 36.87 - samples/sec: 1628.86 - lr: 0.000002 - momentum: 0.000000
|
| 215 |
+
2025-05-08 16:56:06,581 epoch 10 - iter 372/937 - loss 0.00047798 - time (sec): 49.16 - samples/sec: 1629.04 - lr: 0.000001 - momentum: 0.000000
|
| 216 |
+
2025-05-08 16:56:18,756 epoch 10 - iter 465/937 - loss 0.00038804 - time (sec): 61.33 - samples/sec: 1636.96 - lr: 0.000001 - momentum: 0.000000
|
| 217 |
+
2025-05-08 16:56:32,377 epoch 10 - iter 558/937 - loss 0.00039768 - time (sec): 74.95 - samples/sec: 1618.78 - lr: 0.000001 - momentum: 0.000000
|
| 218 |
+
2025-05-08 16:56:44,569 epoch 10 - iter 651/937 - loss 0.00034346 - time (sec): 87.14 - samples/sec: 1629.88 - lr: 0.000001 - momentum: 0.000000
|
| 219 |
+
2025-05-08 16:56:56,802 epoch 10 - iter 744/937 - loss 0.00053786 - time (sec): 99.38 - samples/sec: 1636.84 - lr: 0.000000 - momentum: 0.000000
|
| 220 |
+
2025-05-08 16:57:09,165 epoch 10 - iter 837/937 - loss 0.00068597 - time (sec): 111.74 - samples/sec: 1634.46 - lr: 0.000000 - momentum: 0.000000
|
| 221 |
+
2025-05-08 16:57:21,552 epoch 10 - iter 930/937 - loss 0.00067756 - time (sec): 124.13 - samples/sec: 1637.73 - lr: 0.000000 - momentum: 0.000000
|
| 222 |
+
2025-05-08 16:57:22,414 ----------------------------------------------------------------------------------------------------
|
| 223 |
+
2025-05-08 16:57:22,414 EPOCH 10 done: loss 0.0007 - lr: 0.000000
|
| 224 |
+
2025-05-08 16:57:27,886 DEV : loss 0.13694016635417938 - f1-score (micro avg) 0.9645
|
| 225 |
+
2025-05-08 16:57:29,653 ----------------------------------------------------------------------------------------------------
|
| 226 |
+
2025-05-08 16:57:29,654 Loading model from best epoch ...
|
| 227 |
+
2025-05-08 16:57:29,959 --------------------------------------------------
|
| 228 |
+
2025-05-08 16:57:29,959 - Loading SequenceTagger
|
| 229 |
+
2025-05-08 16:57:31,867 - Predicts 17 classes: ['O', 'S-LOC', 'B-LOC', 'E-LOC', 'I-LOC', 'S-PER', 'B-PER', 'E-PER', 'I-PER', 'S-ORG', 'B-ORG', 'E-ORG', 'I-ORG', 'S-MISC', 'B-MISC', 'E-MISC', 'I-MISC']
|
| 230 |
+
2025-05-08 16:57:31,940 --------------------------------------------------
|
| 231 |
+
2025-05-08 16:57:31,941 - Model license: No license information available
|
| 232 |
+
2025-05-08 16:57:31,941 --------------------------------------------------
|
| 233 |
+
2025-05-08 16:57:36,988
|
| 234 |
+
Results:
|
| 235 |
+
- F-score (micro) 0.9234
|
| 236 |
+
- F-score (macro) 0.9111
|
| 237 |
+
- Accuracy 0.8908
|
| 238 |
+
|
| 239 |
+
By class:
|
| 240 |
+
precision recall f1-score support
|
| 241 |
+
|
| 242 |
+
ORG 0.8935 0.9145 0.9039 1661
|
| 243 |
+
LOC 0.9315 0.9376 0.9346 1668
|
| 244 |
+
PER 0.9811 0.9635 0.9722 1617
|
| 245 |
+
MISC 0.8178 0.8504 0.8338 702
|
| 246 |
+
|
| 247 |
+
micro avg 0.9194 0.9274 0.9234 5648
|
| 248 |
+
macro avg 0.9060 0.9165 0.9111 5648
|
| 249 |
+
weighted avg 0.9204 0.9274 0.9238 5648
|
| 250 |
+
|
| 251 |
+
2025-05-08 16:57:36,988 ----------------------------------------------------------------------------------------------------
|