WeDLM-8B-Instruct / modeling_wedlm.py
exlaw's picture
Upload folder using huggingface_hub (#1)
e2e9157 verified
# coding=utf-8
# Copyright 2024 The WeDLM team and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch WeDLM model."""
from typing import Optional, Tuple, Union, Dict, List, Callable
import torch
from torch import nn
import torch.nn.functional as F
from transformers import PreTrainedModel, GenerationMixin
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
from transformers.utils.generic import check_model_inputs
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
# Import attention-related utilities
try:
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
except ImportError:
FlashAttentionKwargs = dict
try:
from transformers.integrations.flash_attention import ALL_ATTENTION_FUNCTIONS
except ImportError:
try:
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
except ImportError:
ALL_ATTENTION_FUNCTIONS = {}
from .configuration_wedlm import WeDLMConfig
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# ============================================================================
# Core Components (self-contained, no Qwen2 dependency)
# ============================================================================
class WeDLMMLP(nn.Module):
"""WeDLM MLP module with SwiGLU activation."""
def __init__(self, config: WeDLMConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x: torch.Tensor) -> torch.Tensor:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class WeDLMRMSNorm(nn.Module):
"""WeDLM RMSNorm, equivalent to T5LayerNorm."""
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self) -> str:
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class WeDLMRotaryEmbedding(nn.Module):
"""WeDLM Rotary Position Embedding."""
def __init__(self, config: WeDLMConfig, device=None):
super().__init__()
# Determine rope_type from config
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type", "default"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
# Get initialization function
if self.rope_type == "default":
inv_freq, self.attention_scaling = self._compute_default_rope_parameters(config, device)
else:
rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = rope_init_fn(config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@staticmethod
def _compute_default_rope_parameters(
config: WeDLMConfig,
device: Optional[torch.device] = None,
) -> Tuple[torch.Tensor, float]:
"""
Computes the inverse frequencies for default RoPE.
Args:
config: Model configuration
device: Device to place the tensors on
Returns:
Tuple of (inv_freq tensor, attention_scaling factor)
"""
base = config.rope_theta
dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
# Compute the inverse frequencies
inv_freq = 1.0 / (
base ** (torch.arange(0, dim, 2, dtype=torch.int64).to(device=device, dtype=torch.float) / dim)
)
attention_factor = 1.0
return inv_freq, attention_factor
@torch.no_grad()
def forward(self, x: torch.Tensor, position_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Compute rotary position embeddings.
Args:
x: Input tensor, used for dtype and device
position_ids: Position indices
Returns:
Tuple of (cos, sin) tensors
"""
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
# Force float32 computation for numerical stability
with torch.amp.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# ============================================================================
# Attention Utilities
# ============================================================================
def rotate_half(x: torch.Tensor) -> torch.Tensor:
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
unsqueeze_dim: int = 1
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Applies Rotary Position Embedding to the query and key tensors."""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
Repeats key/value heads to match the number of query heads (for GQA).
Equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Eager (standard) attention implementation."""
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
# ============================================================================
# Attention Layer
# ============================================================================
class WeDLMAttention(nn.Module):
"""
WeDLM Attention module.
Supports both:
- Qwen2.5 style: with QKV bias, no QK Norm
- Qwen3 style: configurable QKV bias, with QK Norm
"""
def __init__(self, config: WeDLMConfig, layer_idx: int):
super().__init__()
self.layer_type = config.layer_types[layer_idx] if hasattr(config, "layer_types") else None
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim ** -0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
# Support configurable attention_bias (Qwen2.5: True, Qwen3: False by default)
attention_bias = getattr(config, "attention_bias", True)
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=attention_bias)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=attention_bias)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=attention_bias)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
# Support optional QK Norm (Qwen3 feature)
self.qk_norm = getattr(config, "qk_norm", False)
if self.qk_norm:
self.q_norm = WeDLMRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = WeDLMRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.sliding_window = config.sliding_window if self.layer_type == "sliding_attention" else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
if self.qk_norm:
# Qwen3 style: apply norm after projection, before transpose
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
else:
# Qwen2 style: no norm
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_values is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Select attention implementation
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager" and self.config._attn_implementation in ALL_ATTENTION_FUNCTIONS:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
# ============================================================================
# Decoder Layer
# ============================================================================
class WeDLMDecoderLayer(GradientCheckpointingLayer):
"""WeDLM Decoder Layer with pre-norm architecture."""
def __init__(self, config: WeDLMConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = WeDLMAttention(config=config, layer_idx=layer_idx)
self.mlp = WeDLMMLP(config)
self.input_layernorm = WeDLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = WeDLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.attention_type = config.layer_types[layer_idx]
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states: Input tensor of shape `(batch, seq_len, embed_dim)`
attention_mask: Attention mask of size `(batch, sequence_length)`
position_ids: Position indices
past_key_values: Cached past key and value projection states
output_attentions: Whether to return attention weights
use_cache: Whether to use KV cache
cache_position: Position in the cache
position_embeddings: Tuple of (cos, sin) for rotary embeddings
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
past_key_values=past_key_values,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Feed Forward
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
# ============================================================================
# Model Classes
# ============================================================================
@auto_docstring
class WeDLMPreTrainedModel(PreTrainedModel):
"""Base class for WeDLM models."""
config_class = WeDLMConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["WeDLMDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_can_compile_fullgraph = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": WeDLMDecoderLayer,
"attentions": WeDLMAttention,
}
@auto_docstring
class WeDLMModel(WeDLMPreTrainedModel):
"""
WeDLM base model outputting raw hidden states.
"""
def __init__(self, config: WeDLMConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[WeDLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = WeDLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = WeDLMRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.has_sliding_layers = "sliding_attention" in self.config.layer_types
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache(config=self.config)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# Prepare attention masks
if not isinstance(causal_mask_mapping := attention_mask, dict):
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": past_key_values,
"position_ids": position_ids,
}
causal_mask_mapping = {
"full_attention": create_causal_mask(**mask_kwargs),
}
if self.has_sliding_layers:
causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
hidden_states = inputs_embeds
# Create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# Decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask_mapping[decoder_layer.attention_type],
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@auto_docstring
class WeDLMForCausalLM(WeDLMPreTrainedModel, GenerationMixin):
"""
WeDLM Model for Causal Language Modeling with WeDLM block decoding support.
"""
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: WeDLMConfig):
super().__init__(config)
self.model = WeDLMModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def _efficient_reorder_sequence(
self,
tokens: torch.Tensor,
mask_indices: torch.Tensor,
position_ids: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Helper function to reorder sequence by moving MASK parts to the end.
"""
reordered_tokens = torch.cat((tokens[~mask_indices], tokens[mask_indices]))
reordered_position_ids = torch.cat((position_ids[~mask_indices], position_ids[mask_indices]))
return reordered_tokens, reordered_position_ids
@torch.no_grad()
def _generate_one_block(
self,
prefix_ids: torch.Tensor,
prefix_position_ids: torch.Tensor,
block_size: int,
mask_token_id: int,
confidence_threshold: float = 0.0,
temperature: float = 1.0,
top_p: float = 1.0,
top_k: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor, Dict]:
"""
Generate one block of content based on the given prefix.
Args:
prefix_ids: Current sequence token IDs
prefix_position_ids: Position IDs for current sequence
block_size: Number of tokens to generate in this block
mask_token_id: Token ID for MASK token
confidence_threshold: Minimum confidence to accept a prediction
temperature: Sampling temperature
top_p: Nucleus sampling parameter (unused currently)
top_k: Top-k sampling parameter (unused currently)
Returns:
Tuple of (updated_ids, updated_position_ids, block_statistics)
"""
device = prefix_ids.device
# 1. Append a block of MASK tokens after the current prefix
mask_tensor = torch.full((block_size,), mask_token_id, dtype=torch.long, device=device)
current_ids = torch.cat([prefix_ids, mask_tensor])
# Create position encodings for the newly added MASKs
start_pos = prefix_position_ids[-1].item() + 1 if len(prefix_position_ids) > 0 else 0
mask_position_ids = torch.arange(start_pos, start_pos + block_size, dtype=torch.long, device=device)
original_position_ids = torch.cat([prefix_position_ids, mask_position_ids])
# Mark which positions are MASK
is_mask = (current_ids == mask_token_id)
# Statistics
block_stats = {
'steps': 0,
'tokens_generated': 0,
'tokens_per_step': [],
'max_confidences': [],
}
# 2. WeDLM iteration within the block
for step in range(block_size):
if not is_mask.any():
break
block_stats['steps'] += 1
# 2.1 Reorder sequence
reordered_ids, reordered_position_ids = self._efficient_reorder_sequence(
current_ids, is_mask, original_position_ids
)
# 2.2 Prepare input
input_ids = reordered_ids.unsqueeze(0)
position_ids = reordered_position_ids.unsqueeze(0)
seq_len = input_ids.shape[1]
attention_mask = torch.ones((1, seq_len), dtype=torch.long, device=device)
# 2.3 Model forward pass
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
use_cache=False,
return_dict=True,
)
hidden_states = outputs.last_hidden_state
logits = self.lm_head(hidden_states)
# 2.4 Get logits for MASK positions
num_non_mask = (~is_mask).sum().item()
mask_logits = logits[0, num_non_mask:]
if mask_logits.size(0) == 0:
break
mask_logits = mask_logits / temperature
probs = F.softmax(mask_logits, dim=-1)
max_probs, predicted_ids = probs.max(dim=-1)
block_stats['max_confidences'].append(max_probs.max().item())
# 2.5 Select positions to fill
if confidence_threshold > 0.0:
above_threshold_mask = max_probs >= confidence_threshold
if above_threshold_mask.any():
indices_to_fill = above_threshold_mask.nonzero(as_tuple=True)[0]
num_tokens_this_step = len(indices_to_fill)
else:
best_idx = max_probs.argmax()
indices_to_fill = best_idx.unsqueeze(0)
num_tokens_this_step = 1
else:
best_idx = max_probs.argmax()
indices_to_fill = best_idx.unsqueeze(0)
num_tokens_this_step = 1
block_stats['tokens_per_step'].append(num_tokens_this_step)
block_stats['tokens_generated'] += num_tokens_this_step
# 2.6 Update all selected positions
for idx in indices_to_fill:
idx_item = idx.item()
best_token_id = predicted_ids[idx_item].item()
best_pos_in_reordered = num_non_mask + idx_item
original_pos_value = reordered_position_ids[best_pos_in_reordered].item()
original_pos_in_seq = (original_position_ids == original_pos_value).nonzero(as_tuple=True)[0].item()
current_ids[original_pos_in_seq] = best_token_id
is_mask[original_pos_in_seq] = False
return current_ids, original_position_ids, block_stats
@torch.no_grad()
def generate_wedlm(
self,
input_ids: torch.LongTensor,
max_new_tokens: int,
block_size: int,
mask_token_id: Optional[int] = None,
confidence_threshold: float = 0.0,
temperature: float = 1.0,
top_p: float = 1.0,
top_k: int = 0,
pad_token_id: Optional[int] = None,
return_stats: bool = True,
**kwargs
) -> Union[torch.LongTensor, Dict]:
"""
Generate text using WeDLM block decoding mode.
Args:
input_ids: Input token IDs of shape (batch_size, seq_len)
max_new_tokens: Maximum number of new tokens to generate
block_size: Number of tokens to generate per block
mask_token_id: Token ID for MASK token
confidence_threshold: Minimum confidence to accept predictions (0.0-1.0)
temperature: Sampling temperature
top_p: Nucleus sampling parameter
top_k: Top-k sampling parameter
pad_token_id: Token ID for padding
return_stats: Whether to return generation statistics
Returns:
If return_stats=False: Generated token sequences
If return_stats=True: Dict with 'sequences' and 'stats'
"""
if mask_token_id is None:
mask_token_id = getattr(self.config, "mask_token_id", None)
if mask_token_id is None:
raise ValueError("mask_token_id must be provided or set in config")
if pad_token_id is None:
pad_token_id = self.config.pad_token_id
if not 0.0 <= confidence_threshold <= 1.0:
raise ValueError(f"confidence_threshold must be between 0 and 1, got {confidence_threshold}")
batch_size = input_ids.shape[0]
device = input_ids.device
num_blocks = (max_new_tokens + block_size - 1) // block_size
logger.info(
f"Starting WeDLM generation: max_new_tokens={max_new_tokens}, block_size={block_size}, "
f"confidence_threshold={confidence_threshold}, num_blocks={num_blocks}"
)
all_generated = []
all_sample_stats = []
for batch_idx in range(batch_size):
sample_ids = input_ids[batch_idx]
if pad_token_id is not None:
pad_mask = (sample_ids != pad_token_id)
if pad_mask.any():
valid_length = pad_mask.sum().item()
prefix_ids = sample_ids[:valid_length]
else:
prefix_ids = sample_ids
else:
prefix_ids = sample_ids
prefix_length = prefix_ids.shape[0]
current_position_ids = torch.arange(prefix_length, dtype=torch.long, device=device)
current_ids = prefix_ids.clone()
sample_stats = {
'input_length': prefix_length,
'total_steps': 0,
'total_tokens_generated': 0,
'blocks': [],
}
for block_idx in range(num_blocks):
remaining_tokens = max_new_tokens - block_idx * block_size
current_block_size = min(block_size, remaining_tokens)
logger.debug(
f"Batch {batch_idx}, Block {block_idx}/{num_blocks}: "
f"generating {current_block_size} tokens"
)
current_ids, current_position_ids, block_stats = self._generate_one_block(
prefix_ids=current_ids,
prefix_position_ids=current_position_ids,
block_size=current_block_size,
mask_token_id=mask_token_id,
confidence_threshold=confidence_threshold,
temperature=temperature,
top_p=top_p,
top_k=top_k,
)
sample_stats['total_steps'] += block_stats['steps']
sample_stats['total_tokens_generated'] += block_stats['tokens_generated']
sample_stats['blocks'].append(block_stats)
sample_stats['actual_tokens_generated'] = len(current_ids) - prefix_length
sample_stats['output_length'] = len(current_ids)
all_generated.append(current_ids)
all_sample_stats.append(sample_stats)
max_length = max(seq.shape[0] for seq in all_generated)
padded_sequences = []
for seq in all_generated:
if seq.shape[0] < max_length:
padding = torch.full(
(max_length - seq.shape[0],),
pad_token_id if pad_token_id is not None else 0,
dtype=torch.long,
device=device
)
seq = torch.cat([seq, padding])
padded_sequences.append(seq)
result_sequences = torch.stack(padded_sequences, dim=0)
total_steps = sum(s['total_steps'] for s in all_sample_stats)
total_tokens = sum(s['total_tokens_generated'] for s in all_sample_stats)
avg_tokens_per_step = total_tokens / total_steps if total_steps > 0 else 0
logger.info(
f"WeDLM generation completed: "
f"total_steps={total_steps}, "
f"total_tokens_generated={total_tokens}, "
f"avg_tokens_per_step={avg_tokens_per_step:.2f}"
)
if not return_stats:
return result_sequences
return {
'sequences': result_sequences,
'stats': {
'total_steps': total_steps,
'total_tokens_generated': total_tokens,
'average_tokens_per_step': avg_tokens_per_step,
'efficiency_ratio': total_tokens / total_steps if total_steps > 0 else 0,
'per_sample_stats': all_sample_stats,
'config': {
'batch_size': batch_size,
'max_new_tokens': max_new_tokens,
'block_size': block_size,
'confidence_threshold': confidence_threshold,
'temperature': temperature,
}
}
}
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
**kwargs
):
if past_key_values is not None:
if inputs_embeds is not None:
input_ids = input_ids[:, -cache_position.shape[0]:]
elif input_ids.shape[1] != cache_position.shape[0]:
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if isinstance(past_key_values, DynamicCache) and attention_mask.ndim == 2:
model_inputs["cache_position"] = cache_position
model_inputs["past_key_values"] = past_key_values
model_inputs["use_cache"] = use_cache
model_inputs["position_ids"] = position_ids
model_inputs["attention_mask"] = attention_mask
return model_inputs
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
__all__ = [
"WeDLMConfig",
"WeDLMPreTrainedModel",
"WeDLMModel",
"WeDLMForCausalLM",
]