|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch WeDLM model.""" |
|
|
|
|
|
from typing import Optional, Tuple, Union, Dict, List, Callable |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from transformers import PreTrainedModel, GenerationMixin |
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple |
|
|
from transformers.utils.generic import check_model_inputs |
|
|
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask |
|
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS |
|
|
|
|
|
|
|
|
try: |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
except ImportError: |
|
|
FlashAttentionKwargs = dict |
|
|
|
|
|
try: |
|
|
from transformers.integrations.flash_attention import ALL_ATTENTION_FUNCTIONS |
|
|
except ImportError: |
|
|
try: |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS |
|
|
except ImportError: |
|
|
ALL_ATTENTION_FUNCTIONS = {} |
|
|
|
|
|
from .configuration_wedlm import WeDLMConfig |
|
|
|
|
|
import logging |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
logger.setLevel(logging.DEBUG) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class WeDLMMLP(nn.Module): |
|
|
"""WeDLM MLP module with SwiGLU activation.""" |
|
|
|
|
|
def __init__(self, config: WeDLMConfig): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
class WeDLMRMSNorm(nn.Module): |
|
|
"""WeDLM RMSNorm, equivalent to T5LayerNorm.""" |
|
|
|
|
|
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None: |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
def extra_repr(self) -> str: |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
class WeDLMRotaryEmbedding(nn.Module): |
|
|
"""WeDLM Rotary Position Embedding.""" |
|
|
|
|
|
def __init__(self, config: WeDLMConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type", "default")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
|
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
self.config = config |
|
|
|
|
|
|
|
|
if self.rope_type == "default": |
|
|
inv_freq, self.attention_scaling = self._compute_default_rope_parameters(config, device) |
|
|
else: |
|
|
rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
inv_freq, self.attention_scaling = rope_init_fn(config, device) |
|
|
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@staticmethod |
|
|
def _compute_default_rope_parameters( |
|
|
config: WeDLMConfig, |
|
|
device: Optional[torch.device] = None, |
|
|
) -> Tuple[torch.Tensor, float]: |
|
|
""" |
|
|
Computes the inverse frequencies for default RoPE. |
|
|
|
|
|
Args: |
|
|
config: Model configuration |
|
|
device: Device to place the tensors on |
|
|
|
|
|
Returns: |
|
|
Tuple of (inv_freq tensor, attention_scaling factor) |
|
|
""" |
|
|
base = config.rope_theta |
|
|
dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads |
|
|
|
|
|
|
|
|
inv_freq = 1.0 / ( |
|
|
base ** (torch.arange(0, dim, 2, dtype=torch.int64).to(device=device, dtype=torch.float) / dim) |
|
|
) |
|
|
attention_factor = 1.0 |
|
|
return inv_freq, attention_factor |
|
|
|
|
|
@torch.no_grad() |
|
|
def forward(self, x: torch.Tensor, position_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Compute rotary position embeddings. |
|
|
|
|
|
Args: |
|
|
x: Input tensor, used for dtype and device |
|
|
position_ids: Position indices |
|
|
|
|
|
Returns: |
|
|
Tuple of (cos, sin) tensors |
|
|
""" |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
|
|
|
|
|
|
with torch.amp.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rotate_half(x: torch.Tensor) -> torch.Tensor: |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb( |
|
|
q: torch.Tensor, |
|
|
k: torch.Tensor, |
|
|
cos: torch.Tensor, |
|
|
sin: torch.Tensor, |
|
|
position_ids: Optional[torch.Tensor] = None, |
|
|
unsqueeze_dim: int = 1 |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Applies Rotary Position Embedding to the query and key tensors.""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
Repeats key/value heads to match the number of query heads (for GQA). |
|
|
|
|
|
Equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Eager (standard) attention implementation.""" |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
|
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class WeDLMAttention(nn.Module): |
|
|
""" |
|
|
WeDLM Attention module. |
|
|
|
|
|
Supports both: |
|
|
- Qwen2.5 style: with QKV bias, no QK Norm |
|
|
- Qwen3 style: configurable QKV bias, with QK Norm |
|
|
""" |
|
|
|
|
|
def __init__(self, config: WeDLMConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.layer_type = config.layer_types[layer_idx] if hasattr(config, "layer_types") else None |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
|
self.scaling = self.head_dim ** -0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
|
|
|
|
|
|
attention_bias = getattr(config, "attention_bias", True) |
|
|
|
|
|
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=attention_bias) |
|
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=attention_bias) |
|
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=attention_bias) |
|
|
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
|
|
|
|
|
|
self.qk_norm = getattr(config, "qk_norm", False) |
|
|
if self.qk_norm: |
|
|
self.q_norm = WeDLMRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
self.k_norm = WeDLMRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
|
|
|
self.sliding_window = config.sliding_window if self.layer_type == "sliding_attention" else None |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_values: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
if self.qk_norm: |
|
|
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
else: |
|
|
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
|
|
if past_key_values is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager" and self.config._attn_implementation in ALL_ATTENTION_FUNCTIONS: |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=self.sliding_window, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class WeDLMDecoderLayer(GradientCheckpointingLayer): |
|
|
"""WeDLM Decoder Layer with pre-norm architecture.""" |
|
|
|
|
|
def __init__(self, config: WeDLMConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.self_attn = WeDLMAttention(config=config, layer_idx=layer_idx) |
|
|
self.mlp = WeDLMMLP(config) |
|
|
self.input_layernorm = WeDLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = WeDLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.attention_type = config.layer_types[layer_idx] |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
|
""" |
|
|
Args: |
|
|
hidden_states: Input tensor of shape `(batch, seq_len, embed_dim)` |
|
|
attention_mask: Attention mask of size `(batch, sequence_length)` |
|
|
position_ids: Position indices |
|
|
past_key_values: Cached past key and value projection states |
|
|
output_attentions: Whether to return attention weights |
|
|
use_cache: Whether to use KV cache |
|
|
cache_position: Position in the cache |
|
|
position_embeddings: Tuple of (cos, sin) for rotary embeddings |
|
|
""" |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
position_embeddings=position_embeddings, |
|
|
attention_mask=attention_mask, |
|
|
past_key_values=past_key_values, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class WeDLMPreTrainedModel(PreTrainedModel): |
|
|
"""Base class for WeDLM models.""" |
|
|
|
|
|
config_class = WeDLMConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["WeDLMDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
_can_compile_fullgraph = True |
|
|
_supports_attention_backend = True |
|
|
_can_record_outputs = { |
|
|
"hidden_states": WeDLMDecoderLayer, |
|
|
"attentions": WeDLMAttention, |
|
|
} |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class WeDLMModel(WeDLMPreTrainedModel): |
|
|
""" |
|
|
WeDLM base model outputting raw hidden states. |
|
|
""" |
|
|
|
|
|
def __init__(self, config: WeDLMConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[WeDLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = WeDLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = WeDLMRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
self.has_sliding_layers = "sliding_attention" in self.config.layer_types |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.embed_tokens = value |
|
|
|
|
|
@check_model_inputs |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache(config=self.config) |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
|
|
|
if not isinstance(causal_mask_mapping := attention_mask, dict): |
|
|
mask_kwargs = { |
|
|
"config": self.config, |
|
|
"input_embeds": inputs_embeds, |
|
|
"attention_mask": attention_mask, |
|
|
"cache_position": cache_position, |
|
|
"past_key_values": past_key_values, |
|
|
"position_ids": position_ids, |
|
|
} |
|
|
causal_mask_mapping = { |
|
|
"full_attention": create_causal_mask(**mask_kwargs), |
|
|
} |
|
|
if self.has_sliding_layers: |
|
|
causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask_mapping[decoder_layer.attention_type], |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if not return_dict: |
|
|
return tuple(v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class WeDLMForCausalLM(WeDLMPreTrainedModel, GenerationMixin): |
|
|
""" |
|
|
WeDLM Model for Causal Language Modeling with WeDLM block decoding support. |
|
|
""" |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
def __init__(self, config: WeDLMConfig): |
|
|
super().__init__(config) |
|
|
self.model = WeDLMModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
def _efficient_reorder_sequence( |
|
|
self, |
|
|
tokens: torch.Tensor, |
|
|
mask_indices: torch.Tensor, |
|
|
position_ids: torch.Tensor |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Helper function to reorder sequence by moving MASK parts to the end. |
|
|
""" |
|
|
reordered_tokens = torch.cat((tokens[~mask_indices], tokens[mask_indices])) |
|
|
reordered_position_ids = torch.cat((position_ids[~mask_indices], position_ids[mask_indices])) |
|
|
return reordered_tokens, reordered_position_ids |
|
|
|
|
|
@torch.no_grad() |
|
|
def _generate_one_block( |
|
|
self, |
|
|
prefix_ids: torch.Tensor, |
|
|
prefix_position_ids: torch.Tensor, |
|
|
block_size: int, |
|
|
mask_token_id: int, |
|
|
confidence_threshold: float = 0.0, |
|
|
temperature: float = 1.0, |
|
|
top_p: float = 1.0, |
|
|
top_k: int = 0, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor, Dict]: |
|
|
""" |
|
|
Generate one block of content based on the given prefix. |
|
|
|
|
|
Args: |
|
|
prefix_ids: Current sequence token IDs |
|
|
prefix_position_ids: Position IDs for current sequence |
|
|
block_size: Number of tokens to generate in this block |
|
|
mask_token_id: Token ID for MASK token |
|
|
confidence_threshold: Minimum confidence to accept a prediction |
|
|
temperature: Sampling temperature |
|
|
top_p: Nucleus sampling parameter (unused currently) |
|
|
top_k: Top-k sampling parameter (unused currently) |
|
|
|
|
|
Returns: |
|
|
Tuple of (updated_ids, updated_position_ids, block_statistics) |
|
|
""" |
|
|
device = prefix_ids.device |
|
|
|
|
|
|
|
|
mask_tensor = torch.full((block_size,), mask_token_id, dtype=torch.long, device=device) |
|
|
current_ids = torch.cat([prefix_ids, mask_tensor]) |
|
|
|
|
|
|
|
|
start_pos = prefix_position_ids[-1].item() + 1 if len(prefix_position_ids) > 0 else 0 |
|
|
mask_position_ids = torch.arange(start_pos, start_pos + block_size, dtype=torch.long, device=device) |
|
|
original_position_ids = torch.cat([prefix_position_ids, mask_position_ids]) |
|
|
|
|
|
|
|
|
is_mask = (current_ids == mask_token_id) |
|
|
|
|
|
|
|
|
block_stats = { |
|
|
'steps': 0, |
|
|
'tokens_generated': 0, |
|
|
'tokens_per_step': [], |
|
|
'max_confidences': [], |
|
|
} |
|
|
|
|
|
|
|
|
for step in range(block_size): |
|
|
if not is_mask.any(): |
|
|
break |
|
|
|
|
|
block_stats['steps'] += 1 |
|
|
|
|
|
|
|
|
reordered_ids, reordered_position_ids = self._efficient_reorder_sequence( |
|
|
current_ids, is_mask, original_position_ids |
|
|
) |
|
|
|
|
|
|
|
|
input_ids = reordered_ids.unsqueeze(0) |
|
|
position_ids = reordered_position_ids.unsqueeze(0) |
|
|
|
|
|
seq_len = input_ids.shape[1] |
|
|
attention_mask = torch.ones((1, seq_len), dtype=torch.long, device=device) |
|
|
|
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
use_cache=False, |
|
|
return_dict=True, |
|
|
) |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
logits = self.lm_head(hidden_states) |
|
|
|
|
|
|
|
|
num_non_mask = (~is_mask).sum().item() |
|
|
mask_logits = logits[0, num_non_mask:] |
|
|
|
|
|
if mask_logits.size(0) == 0: |
|
|
break |
|
|
|
|
|
mask_logits = mask_logits / temperature |
|
|
probs = F.softmax(mask_logits, dim=-1) |
|
|
max_probs, predicted_ids = probs.max(dim=-1) |
|
|
|
|
|
block_stats['max_confidences'].append(max_probs.max().item()) |
|
|
|
|
|
|
|
|
if confidence_threshold > 0.0: |
|
|
above_threshold_mask = max_probs >= confidence_threshold |
|
|
|
|
|
if above_threshold_mask.any(): |
|
|
indices_to_fill = above_threshold_mask.nonzero(as_tuple=True)[0] |
|
|
num_tokens_this_step = len(indices_to_fill) |
|
|
else: |
|
|
best_idx = max_probs.argmax() |
|
|
indices_to_fill = best_idx.unsqueeze(0) |
|
|
num_tokens_this_step = 1 |
|
|
else: |
|
|
best_idx = max_probs.argmax() |
|
|
indices_to_fill = best_idx.unsqueeze(0) |
|
|
num_tokens_this_step = 1 |
|
|
|
|
|
block_stats['tokens_per_step'].append(num_tokens_this_step) |
|
|
block_stats['tokens_generated'] += num_tokens_this_step |
|
|
|
|
|
|
|
|
for idx in indices_to_fill: |
|
|
idx_item = idx.item() |
|
|
best_token_id = predicted_ids[idx_item].item() |
|
|
|
|
|
best_pos_in_reordered = num_non_mask + idx_item |
|
|
original_pos_value = reordered_position_ids[best_pos_in_reordered].item() |
|
|
original_pos_in_seq = (original_position_ids == original_pos_value).nonzero(as_tuple=True)[0].item() |
|
|
|
|
|
current_ids[original_pos_in_seq] = best_token_id |
|
|
is_mask[original_pos_in_seq] = False |
|
|
|
|
|
return current_ids, original_position_ids, block_stats |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate_wedlm( |
|
|
self, |
|
|
input_ids: torch.LongTensor, |
|
|
max_new_tokens: int, |
|
|
block_size: int, |
|
|
mask_token_id: Optional[int] = None, |
|
|
confidence_threshold: float = 0.0, |
|
|
temperature: float = 1.0, |
|
|
top_p: float = 1.0, |
|
|
top_k: int = 0, |
|
|
pad_token_id: Optional[int] = None, |
|
|
return_stats: bool = True, |
|
|
**kwargs |
|
|
) -> Union[torch.LongTensor, Dict]: |
|
|
""" |
|
|
Generate text using WeDLM block decoding mode. |
|
|
|
|
|
Args: |
|
|
input_ids: Input token IDs of shape (batch_size, seq_len) |
|
|
max_new_tokens: Maximum number of new tokens to generate |
|
|
block_size: Number of tokens to generate per block |
|
|
mask_token_id: Token ID for MASK token |
|
|
confidence_threshold: Minimum confidence to accept predictions (0.0-1.0) |
|
|
temperature: Sampling temperature |
|
|
top_p: Nucleus sampling parameter |
|
|
top_k: Top-k sampling parameter |
|
|
pad_token_id: Token ID for padding |
|
|
return_stats: Whether to return generation statistics |
|
|
|
|
|
Returns: |
|
|
If return_stats=False: Generated token sequences |
|
|
If return_stats=True: Dict with 'sequences' and 'stats' |
|
|
""" |
|
|
if mask_token_id is None: |
|
|
mask_token_id = getattr(self.config, "mask_token_id", None) |
|
|
if mask_token_id is None: |
|
|
raise ValueError("mask_token_id must be provided or set in config") |
|
|
|
|
|
if pad_token_id is None: |
|
|
pad_token_id = self.config.pad_token_id |
|
|
|
|
|
if not 0.0 <= confidence_threshold <= 1.0: |
|
|
raise ValueError(f"confidence_threshold must be between 0 and 1, got {confidence_threshold}") |
|
|
|
|
|
batch_size = input_ids.shape[0] |
|
|
device = input_ids.device |
|
|
|
|
|
num_blocks = (max_new_tokens + block_size - 1) // block_size |
|
|
|
|
|
logger.info( |
|
|
f"Starting WeDLM generation: max_new_tokens={max_new_tokens}, block_size={block_size}, " |
|
|
f"confidence_threshold={confidence_threshold}, num_blocks={num_blocks}" |
|
|
) |
|
|
|
|
|
all_generated = [] |
|
|
all_sample_stats = [] |
|
|
|
|
|
for batch_idx in range(batch_size): |
|
|
sample_ids = input_ids[batch_idx] |
|
|
if pad_token_id is not None: |
|
|
pad_mask = (sample_ids != pad_token_id) |
|
|
if pad_mask.any(): |
|
|
valid_length = pad_mask.sum().item() |
|
|
prefix_ids = sample_ids[:valid_length] |
|
|
else: |
|
|
prefix_ids = sample_ids |
|
|
else: |
|
|
prefix_ids = sample_ids |
|
|
|
|
|
prefix_length = prefix_ids.shape[0] |
|
|
current_position_ids = torch.arange(prefix_length, dtype=torch.long, device=device) |
|
|
|
|
|
current_ids = prefix_ids.clone() |
|
|
|
|
|
sample_stats = { |
|
|
'input_length': prefix_length, |
|
|
'total_steps': 0, |
|
|
'total_tokens_generated': 0, |
|
|
'blocks': [], |
|
|
} |
|
|
|
|
|
for block_idx in range(num_blocks): |
|
|
remaining_tokens = max_new_tokens - block_idx * block_size |
|
|
current_block_size = min(block_size, remaining_tokens) |
|
|
|
|
|
logger.debug( |
|
|
f"Batch {batch_idx}, Block {block_idx}/{num_blocks}: " |
|
|
f"generating {current_block_size} tokens" |
|
|
) |
|
|
|
|
|
current_ids, current_position_ids, block_stats = self._generate_one_block( |
|
|
prefix_ids=current_ids, |
|
|
prefix_position_ids=current_position_ids, |
|
|
block_size=current_block_size, |
|
|
mask_token_id=mask_token_id, |
|
|
confidence_threshold=confidence_threshold, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
top_k=top_k, |
|
|
) |
|
|
|
|
|
sample_stats['total_steps'] += block_stats['steps'] |
|
|
sample_stats['total_tokens_generated'] += block_stats['tokens_generated'] |
|
|
sample_stats['blocks'].append(block_stats) |
|
|
|
|
|
sample_stats['actual_tokens_generated'] = len(current_ids) - prefix_length |
|
|
sample_stats['output_length'] = len(current_ids) |
|
|
|
|
|
all_generated.append(current_ids) |
|
|
all_sample_stats.append(sample_stats) |
|
|
|
|
|
max_length = max(seq.shape[0] for seq in all_generated) |
|
|
padded_sequences = [] |
|
|
|
|
|
for seq in all_generated: |
|
|
if seq.shape[0] < max_length: |
|
|
padding = torch.full( |
|
|
(max_length - seq.shape[0],), |
|
|
pad_token_id if pad_token_id is not None else 0, |
|
|
dtype=torch.long, |
|
|
device=device |
|
|
) |
|
|
seq = torch.cat([seq, padding]) |
|
|
padded_sequences.append(seq) |
|
|
|
|
|
result_sequences = torch.stack(padded_sequences, dim=0) |
|
|
|
|
|
total_steps = sum(s['total_steps'] for s in all_sample_stats) |
|
|
total_tokens = sum(s['total_tokens_generated'] for s in all_sample_stats) |
|
|
avg_tokens_per_step = total_tokens / total_steps if total_steps > 0 else 0 |
|
|
|
|
|
logger.info( |
|
|
f"WeDLM generation completed: " |
|
|
f"total_steps={total_steps}, " |
|
|
f"total_tokens_generated={total_tokens}, " |
|
|
f"avg_tokens_per_step={avg_tokens_per_step:.2f}" |
|
|
) |
|
|
|
|
|
if not return_stats: |
|
|
return result_sequences |
|
|
|
|
|
return { |
|
|
'sequences': result_sequences, |
|
|
'stats': { |
|
|
'total_steps': total_steps, |
|
|
'total_tokens_generated': total_tokens, |
|
|
'average_tokens_per_step': avg_tokens_per_step, |
|
|
'efficiency_ratio': total_tokens / total_steps if total_steps > 0 else 0, |
|
|
'per_sample_stats': all_sample_stats, |
|
|
'config': { |
|
|
'batch_size': batch_size, |
|
|
'max_new_tokens': max_new_tokens, |
|
|
'block_size': block_size, |
|
|
'confidence_threshold': confidence_threshold, |
|
|
'temperature': temperature, |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs[0] |
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, |
|
|
input_ids, |
|
|
past_key_values=None, |
|
|
attention_mask=None, |
|
|
inputs_embeds=None, |
|
|
cache_position=None, |
|
|
position_ids=None, |
|
|
use_cache=True, |
|
|
**kwargs |
|
|
): |
|
|
if past_key_values is not None: |
|
|
if inputs_embeds is not None: |
|
|
input_ids = input_ids[:, -cache_position.shape[0]:] |
|
|
elif input_ids.shape[1] != cache_position.shape[0]: |
|
|
input_ids = input_ids[:, cache_position] |
|
|
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
|
if past_key_values: |
|
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
|
|
|
|
if inputs_embeds is not None and cache_position[0] == 0: |
|
|
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} |
|
|
else: |
|
|
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} |
|
|
|
|
|
if isinstance(past_key_values, DynamicCache) and attention_mask.ndim == 2: |
|
|
model_inputs["cache_position"] = cache_position |
|
|
model_inputs["past_key_values"] = past_key_values |
|
|
model_inputs["use_cache"] = use_cache |
|
|
model_inputs["position_ids"] = position_ids |
|
|
model_inputs["attention_mask"] = attention_mask |
|
|
return model_inputs |
|
|
|
|
|
model_inputs.update( |
|
|
{ |
|
|
"position_ids": position_ids, |
|
|
"cache_position": cache_position, |
|
|
"past_key_values": past_key_values, |
|
|
"use_cache": use_cache, |
|
|
"attention_mask": attention_mask, |
|
|
} |
|
|
) |
|
|
return model_inputs |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"WeDLMConfig", |
|
|
"WeDLMPreTrainedModel", |
|
|
"WeDLMModel", |
|
|
"WeDLMForCausalLM", |
|
|
] |