File size: 116,365 Bytes
2762d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 |
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- reranker
- generated_from_trainer
- dataset_size:39770704
- loss:MarginMSELoss
base_model: jhu-clsp/ettin-encoder-68m
datasets:
- sentence-transformers/msmarco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
co2_eq_emissions:
emissions: 4822.389375626856
energy_consumed: 13.06404839121821
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: AMD EPYC 7R13 Processor
ram_total_size: 1999.985553741455
hours_used: 2.996
hardware_used: 8 x NVIDIA H100 80GB HBM3
model-index:
- name: CrossEncoder based on jhu-clsp/ettin-encoder-68m
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoMSMARCO R100
type: NanoMSMARCO_R100
metrics:
- type: map
value: 0.6474
name: Map
- type: mrr@10
value: 0.6422
name: Mrr@10
- type: ndcg@10
value: 0.7086
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNFCorpus R100
type: NanoNFCorpus_R100
metrics:
- type: map
value: 0.3581
name: Map
- type: mrr@10
value: 0.5719
name: Mrr@10
- type: ndcg@10
value: 0.4101
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNQ R100
type: NanoNQ_R100
metrics:
- type: map
value: 0.7449
name: Map
- type: mrr@10
value: 0.769
name: Mrr@10
- type: ndcg@10
value: 0.7878
name: Ndcg@10
- task:
type: cross-encoder-nano-beir
name: Cross Encoder Nano BEIR
dataset:
name: NanoBEIR R100 mean
type: NanoBEIR_R100_mean
metrics:
- type: map
value: 0.5834
name: Map
- type: mrr@10
value: 0.661
name: Mrr@10
- type: ndcg@10
value: 0.6355
name: Ndcg@10
---
# CrossEncoder based on jhu-clsp/ettin-encoder-68m
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [jhu-clsp/ettin-encoder-68m](https://huggingface.co/jhu-clsp/ettin-encoder-68m) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [jhu-clsp/ettin-encoder-68m](https://huggingface.co/jhu-clsp/ettin-encoder-68m) <!-- at revision ac19ae4bc51093b31c475665ac872a936d056cc2 -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
- [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/ms-marco-ettin-68m-reranker")
# Get scores for pairs of texts
pairs = [
['does a cars registered owner have to be the insurance policy holder?', 'For example when a person has a company car they may be registered as the keeper though they are not the owner. Named driver-this is a driver who has been added to a car insurance policy to be an additional one to the main driver.'],
['how to pronounce lucretia', "Lucretia /lu-cre-tia/ [3 sylls.] as a girls' name is pronounced loo-KREE-shah. It is of Latin origin, and the meaning of Lucretia is succeed. Also possibly of Etruscan origin and of uncertain meaning. The name of a Roman matron who committed suicide in public protest against dishonor."],
['average cost of gym equipment', 'When equipping a home-gym, itâ\x80\x99s critical to consider at least one piece of cardio equipment. The top four treadmill picks from Consumer Search range from $990 to $3,500, with the average costing around $2,000.Another piece of popular cardio equipment is an elliptical trainer, which averages $1,500.he top four treadmill picks from Consumer Search range from $990 to $3,500, with the average costing around $2,000. Another piece of popular cardio equipment is an elliptical trainer, which averages $1,500.'],
['is cerebral palsy a disease', 'It occurs in about 2.1 per 1,000 live births. Cerebral palsy has been documented throughout history with the first known descriptions occurring in the work of Hippocrates in the 5th century BCE. Extensive study of the condition began in the 19th century by William John Little, after whom it was called Little disease.'],
['what is a service in cherwell', 'Cherwell Service Management (CSM) is a cloud-based software product that helps an IT organization to deliver certified ITIL processes such as: Additionally, it has the ability to provide a customer-friendly IT self-service portal, powerful dashboards and reporting.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'does a cars registered owner have to be the insurance policy holder?',
[
'For example when a person has a company car they may be registered as the keeper though they are not the owner. Named driver-this is a driver who has been added to a car insurance policy to be an additional one to the main driver.',
"Lucretia /lu-cre-tia/ [3 sylls.] as a girls' name is pronounced loo-KREE-shah. It is of Latin origin, and the meaning of Lucretia is succeed. Also possibly of Etruscan origin and of uncertain meaning. The name of a Roman matron who committed suicide in public protest against dishonor.",
'When equipping a home-gym, itâ\x80\x99s critical to consider at least one piece of cardio equipment. The top four treadmill picks from Consumer Search range from $990 to $3,500, with the average costing around $2,000.Another piece of popular cardio equipment is an elliptical trainer, which averages $1,500.he top four treadmill picks from Consumer Search range from $990 to $3,500, with the average costing around $2,000. Another piece of popular cardio equipment is an elliptical trainer, which averages $1,500.',
'It occurs in about 2.1 per 1,000 live births. Cerebral palsy has been documented throughout history with the first known descriptions occurring in the work of Hippocrates in the 5th century BCE. Extensive study of the condition began in the 19th century by William John Little, after whom it was called Little disease.',
'Cherwell Service Management (CSM) is a cloud-based software product that helps an IT organization to deliver certified ITIL processes such as: Additionally, it has the ability to provide a customer-friendly IT self-service portal, powerful dashboards and reporting.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Reranking
* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
```json
{
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|:------------|:---------------------|:---------------------|:---------------------|
| map | 0.6474 (+0.1578) | 0.3581 (+0.0971) | 0.7449 (+0.3253) |
| mrr@10 | 0.6422 (+0.1647) | 0.5719 (+0.0720) | 0.7690 (+0.3423) |
| **ndcg@10** | **0.7086 (+0.1682)** | **0.4101 (+0.0850)** | **0.7878 (+0.2871)** |
#### Cross Encoder Nano BEIR
* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
```
| Metric | Value |
|:------------|:---------------------|
| map | 0.5834 (+0.1934) |
| mrr@10 | 0.6610 (+0.1930) |
| **ndcg@10** | **0.6355 (+0.1801)** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### msmarco
* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 39,770,704 training samples
* Columns: <code>query_id</code>, <code>positive_id</code>, <code>negative_id</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | query_id | positive_id | negative_id | score |
|:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
| type | string | string | string | float |
| details | <ul><li>min: 9 characters</li><li>mean: 34.31 characters</li><li>max: 135 characters</li></ul> | <ul><li>min: 52 characters</li><li>mean: 356.08 characters</li><li>max: 843 characters</li></ul> | <ul><li>min: 75 characters</li><li>mean: 350.32 characters</li><li>max: 990 characters</li></ul> | <ul><li>min: -3.52</li><li>mean: 13.57</li><li>max: 22.49</li></ul> |
* Samples:
| query_id | positive_id | negative_id | score |
|:-----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>what is the salary for a supervisor at tyson foods?</code> | <code>Tyson Foods Production Supervisor Salary. Tyson Foods Production Supervisor average salary is $38,288, median salary is $36,000 with a salary range from $31,000 to $71,200. Tyson Foods Production Supervisor salaries are collected from government agencies and companies. Each salary is associated with a real job position. Tyson Foods Production Supervisor salary statistics is not exclusive and is for reference only. They are presented as is and updated regularly.</code> | <code>Internal Reporting. An employee should follow an employer's policy for making a report of discrimination. In general, the employee should report the discrimination to her supervisor. If the supervisor is responsible for the discrimination, the employee should report the incident to the supervisor's supervisor.</code> | <code>21.560779412587486</code> |
| <code>what is a vulva</code> | <code>The vulva is the outer part of the female genitals. The vulva includes the opening of the vagina (sometimes called the vestibule), the labia majora (outer lips), the labia minora (inner lips), and the clitoris.Around the opening of the vagina, there are 2 sets of skin folds.he Bartholin glands are found just inside the opening of the vagina -- one on each side. These glands produce a mucus-like fluid that acts as a lubricant during sex. At the front of the vagina, the labia minora meet to form a fold or small hood of skin called the prepuce.</code> | <code>Vulvar cancer is a type of cancer that occurs on the outer surface area of the female genitalia. The vulva is the area of skin that surrounds the urethra and vagina, including the clitoris and labia. Vulvar cancer commonly forms as a lump or sore on the vulva that often causes itching. Though it can occur at any age, vulvar cancer is most commonly diagnosed in older women. Vulvar cancer treatment usually involves surgery to remove the cancer and a small amount of surrounding healthy tissue. Sometimes vulvar cancer surgery requires removing the entire vulva. The earlier vulvar cancer is diagnosed, the less likely an extensive surgery is needed for treatment. Symptoms.</code> | <code>1.783429940541585</code> |
| <code>what is fighting type pokemon weak against</code> | <code>Examples: 1 Electric-type attacks on a water/flying-type Pokemon mix for 4x damage. 2 This is because Electric-types are strong against both Water-and Flying-types. 3 Fighting-type attacks on a Flying/Poison-type Pokemon mix for .25x damage.</code> | <code>The second Zapdos, an Electric-type Electric Pokemon. Pokémon zapdos first appeared in the video game series which the player can Capture zapdos in The Power. Plant the last one Is, moltres A-fire Type Flame pokemon pokémon and one of the Three bird pokemon pokémon that is considered as. the most legendary</code> | <code>12.374764601389566</code> |
* Loss: [<code>MarginMSELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#marginmseloss) with these parameters:
```json
{
"activation_fn": "torch.nn.modules.linear.Identity"
}
```
### Evaluation Dataset
#### msmarco
* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 10,000 evaluation samples
* Columns: <code>query_id</code>, <code>positive_id</code>, <code>negative_id</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | query_id | positive_id | negative_id | score |
|:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
| type | string | string | string | float |
| details | <ul><li>min: 11 characters</li><li>mean: 34.73 characters</li><li>max: 158 characters</li></ul> | <ul><li>min: 76 characters</li><li>mean: 355.74 characters</li><li>max: 1217 characters</li></ul> | <ul><li>min: 59 characters</li><li>mean: 339.1 characters</li><li>max: 963 characters</li></ul> | <ul><li>min: -1.69</li><li>mean: 13.45</li><li>max: 22.14</li></ul> |
* Samples:
| query_id | positive_id | negative_id | score |
|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>does a cars registered owner have to be the insurance policy holder?</code> | <code>For example when a person has a company car they may be registered as the keeper though they are not the owner. Named driver-this is a driver who has been added to a car insurance policy to be an additional one to the main driver.</code> | <code>Features & Benefits Of Third Party Insurance Policy For Cars. 1 Death or bodily injury to a third party. 2 Damage to third party property. 3 Accidental death of the vehicleâs Owner or Driver. 4 Permanent Total Disability suffered by vehicleâs Owner or Driver.</code> | <code>5.590251604715983</code> |
| <code>how to pronounce lucretia</code> | <code>Lucretia /lu-cre-tia/ [3 sylls.] as a girls' name is pronounced loo-KREE-shah. It is of Latin origin, and the meaning of Lucretia is succeed. Also possibly of Etruscan origin and of uncertain meaning. The name of a Roman matron who committed suicide in public protest against dishonor.</code> | <code>How To Pronounce Safat. English pronunciation for Safat is: Breaking a name down into syllables can make pronouncing it much easier. If you see the name Safat divided into smaller parts you can try to pronounce each part separately to get correct emphasis.</code> | <code>17.093592802683514</code> |
| <code>average cost of gym equipment</code> | <code>When equipping a home-gym, itâs critical to consider at least one piece of cardio equipment. The top four treadmill picks from Consumer Search range from $990 to $3,500, with the average costing around $2,000.Another piece of popular cardio equipment is an elliptical trainer, which averages $1,500.he top four treadmill picks from Consumer Search range from $990 to $3,500, with the average costing around $2,000. Another piece of popular cardio equipment is an elliptical trainer, which averages $1,500.</code> | <code>âItâs what we all learned â or should have learned â in sixth-grade health class,â he said. âItâs all common sense. You need to keep yourself and your equipment clean. You never know who last used the equipment in a gym. It can be a great breeding ground for these bugs, some of which are pretty nasty.â</code> | <code>15.078913132349651</code> |
* Loss: [<code>MarginMSELoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#marginmseloss) with these parameters:
```json
{
"activation_fn": "torch.nn.modules.linear.Identity"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `project`: huggingface
- `trackio_space_id`: trackio
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: no
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: True
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|:----------:|:---------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1 | -1 | - | - | 0.0191 (-0.5213) | 0.2366 (-0.0884) | 0.0332 (-0.4675) | 0.0963 (-0.3591) |
| 0.0001 | 1 | 205.7634 | - | - | - | - | - |
| 0.0020 | 39 | 209.0864 | - | - | - | - | - |
| 0.0040 | 78 | 205.3905 | - | - | - | - | - |
| 0.0060 | 117 | 198.5226 | - | - | - | - | - |
| 0.0080 | 156 | 187.3992 | - | - | - | - | - |
| 0.0100 | 195 | 173.062 | 163.0107 | 0.0826 (-0.4578) | 0.2753 (-0.0497) | 0.1163 (-0.3844) | 0.1580 (-0.2973) |
| 0.0121 | 234 | 154.6088 | - | - | - | - | - |
| 0.0141 | 273 | 129.1789 | - | - | - | - | - |
| 0.0161 | 312 | 85.9178 | - | - | - | - | - |
| 0.0181 | 351 | 48.0864 | - | - | - | - | - |
| 0.0201 | 390 | 33.2479 | 28.7226 | 0.5448 (+0.0043) | 0.3598 (+0.0347) | 0.4913 (-0.0093) | 0.4653 (+0.0099) |
| 0.0221 | 429 | 26.1395 | - | - | - | - | - |
| 0.0241 | 468 | 21.4156 | - | - | - | - | - |
| 0.0261 | 507 | 18.4675 | - | - | - | - | - |
| 0.0281 | 546 | 16.1435 | - | - | - | - | - |
| 0.0301 | 585 | 14.2426 | 13.7192 | 0.5958 (+0.0553) | 0.3909 (+0.0659) | 0.6268 (+0.1261) | 0.5378 (+0.0825) |
| 0.0321 | 624 | 13.0593 | - | - | - | - | - |
| 0.0341 | 663 | 11.9561 | - | - | - | - | - |
| 0.0362 | 702 | 11.3387 | - | - | - | - | - |
| 0.0382 | 741 | 10.3913 | - | - | - | - | - |
| 0.0402 | 780 | 9.6607 | 9.5505 | 0.5964 (+0.0560) | 0.4018 (+0.0768) | 0.6765 (+0.1759) | 0.5582 (+0.1029) |
| 0.0422 | 819 | 9.1261 | - | - | - | - | - |
| 0.0442 | 858 | 8.6014 | - | - | - | - | - |
| 0.0462 | 897 | 8.3014 | - | - | - | - | - |
| 0.0482 | 936 | 7.8924 | - | - | - | - | - |
| 0.0502 | 975 | 7.5679 | 7.5872 | 0.6055 (+0.0650) | 0.4011 (+0.0761) | 0.7020 (+0.2014) | 0.5695 (+0.1142) |
| 0.0522 | 1014 | 7.2393 | - | - | - | - | - |
| 0.0542 | 1053 | 6.9913 | - | - | - | - | - |
| 0.0562 | 1092 | 6.7492 | - | - | - | - | - |
| 0.0582 | 1131 | 6.5946 | - | - | - | - | - |
| 0.0603 | 1170 | 6.387 | 6.3510 | 0.6506 (+0.1102) | 0.4084 (+0.0833) | 0.7107 (+0.2100) | 0.5899 (+0.1345) |
| 0.0623 | 1209 | 6.1871 | - | - | - | - | - |
| 0.0643 | 1248 | 6.0328 | - | - | - | - | - |
| 0.0663 | 1287 | 6.0049 | - | - | - | - | - |
| 0.0683 | 1326 | 5.7902 | - | - | - | - | - |
| 0.0703 | 1365 | 5.6371 | 5.6318 | 0.6600 (+0.1196) | 0.4063 (+0.0813) | 0.7021 (+0.2014) | 0.5895 (+0.1341) |
| 0.0723 | 1404 | 5.5341 | - | - | - | - | - |
| 0.0743 | 1443 | 5.4093 | - | - | - | - | - |
| 0.0763 | 1482 | 5.4064 | - | - | - | - | - |
| 0.0783 | 1521 | 5.348 | - | - | - | - | - |
| 0.0803 | 1560 | 5.0726 | 5.0712 | 0.6755 (+0.1351) | 0.4093 (+0.0843) | 0.7006 (+0.1999) | 0.5951 (+0.1398) |
| 0.0823 | 1599 | 5.0875 | - | - | - | - | - |
| 0.0844 | 1638 | 5.0279 | - | - | - | - | - |
| 0.0864 | 1677 | 4.884 | - | - | - | - | - |
| 0.0884 | 1716 | 4.8179 | - | - | - | - | - |
| 0.0904 | 1755 | 4.8205 | 4.7885 | 0.6711 (+0.1307) | 0.4048 (+0.0798) | 0.7152 (+0.2146) | 0.5971 (+0.1417) |
| 0.0924 | 1794 | 4.6914 | - | - | - | - | - |
| 0.0944 | 1833 | 4.6565 | - | - | - | - | - |
| 0.0964 | 1872 | 4.5685 | - | - | - | - | - |
| 0.0984 | 1911 | 4.4617 | - | - | - | - | - |
| 0.1004 | 1950 | 4.4202 | 4.3938 | 0.6554 (+0.1150) | 0.4093 (+0.0843) | 0.7045 (+0.2039) | 0.5897 (+0.1344) |
| 0.1024 | 1989 | 4.3885 | - | - | - | - | - |
| 0.1044 | 2028 | 4.351 | - | - | - | - | - |
| 0.1064 | 2067 | 4.2522 | - | - | - | - | - |
| 0.1085 | 2106 | 4.2619 | - | - | - | - | - |
| 0.1105 | 2145 | 4.175 | 4.1509 | 0.6596 (+0.1192) | 0.4149 (+0.0898) | 0.7299 (+0.2293) | 0.6015 (+0.1461) |
| 0.1125 | 2184 | 4.1337 | - | - | - | - | - |
| 0.1145 | 2223 | 4.0883 | - | - | - | - | - |
| 0.1165 | 2262 | 4.0799 | - | - | - | - | - |
| 0.1185 | 2301 | 3.9775 | - | - | - | - | - |
| 0.1205 | 2340 | 3.9562 | 3.9644 | 0.6580 (+0.1176) | 0.4136 (+0.0885) | 0.7437 (+0.2430) | 0.6051 (+0.1497) |
| 0.1225 | 2379 | 3.8889 | - | - | - | - | - |
| 0.1245 | 2418 | 3.8587 | - | - | - | - | - |
| 0.1265 | 2457 | 3.822 | - | - | - | - | - |
| 0.1285 | 2496 | 3.7963 | - | - | - | - | - |
| 0.1305 | 2535 | 3.814 | 3.7850 | 0.6635 (+0.1231) | 0.4036 (+0.0786) | 0.7248 (+0.2242) | 0.5973 (+0.1419) |
| 0.1326 | 2574 | 3.7665 | - | - | - | - | - |
| 0.1346 | 2613 | 3.7226 | - | - | - | - | - |
| 0.1366 | 2652 | 3.7418 | - | - | - | - | - |
| 0.1386 | 2691 | 3.6575 | - | - | - | - | - |
| 0.1406 | 2730 | 3.6418 | 3.6521 | 0.6629 (+0.1225) | 0.4101 (+0.0851) | 0.7334 (+0.2328) | 0.6021 (+0.1468) |
| 0.1426 | 2769 | 3.5892 | - | - | - | - | - |
| 0.1446 | 2808 | 3.5589 | - | - | - | - | - |
| 0.1466 | 2847 | 3.5254 | - | - | - | - | - |
| 0.1486 | 2886 | 3.5035 | - | - | - | - | - |
| 0.1506 | 2925 | 3.5073 | 3.4462 | 0.6679 (+0.1274) | 0.4056 (+0.0805) | 0.7469 (+0.2462) | 0.6068 (+0.1514) |
| 0.1526 | 2964 | 3.4131 | - | - | - | - | - |
| 0.1546 | 3003 | 3.4122 | - | - | - | - | - |
| 0.1567 | 3042 | 3.3845 | - | - | - | - | - |
| 0.1587 | 3081 | 3.3994 | - | - | - | - | - |
| 0.1607 | 3120 | 3.3618 | 3.3692 | 0.6680 (+0.1276) | 0.4109 (+0.0858) | 0.7231 (+0.2224) | 0.6007 (+0.1453) |
| 0.1627 | 3159 | 3.3318 | - | - | - | - | - |
| 0.1647 | 3198 | 3.3173 | - | - | - | - | - |
| 0.1667 | 3237 | 3.3207 | - | - | - | - | - |
| 0.1687 | 3276 | 3.2827 | - | - | - | - | - |
| 0.1707 | 3315 | 3.2371 | 3.2761 | 0.6502 (+0.1097) | 0.4074 (+0.0823) | 0.7402 (+0.2395) | 0.5992 (+0.1439) |
| 0.1727 | 3354 | 3.21 | - | - | - | - | - |
| 0.1747 | 3393 | 3.2402 | - | - | - | - | - |
| 0.1767 | 3432 | 3.1845 | - | - | - | - | - |
| 0.1787 | 3471 | 3.1894 | - | - | - | - | - |
| 0.1808 | 3510 | 3.1895 | 3.2190 | 0.6717 (+0.1312) | 0.4153 (+0.0902) | 0.7344 (+0.2337) | 0.6071 (+0.1517) |
| 0.1828 | 3549 | 3.0807 | - | - | - | - | - |
| 0.1848 | 3588 | 3.0925 | - | - | - | - | - |
| 0.1868 | 3627 | 3.0926 | - | - | - | - | - |
| 0.1888 | 3666 | 3.1132 | - | - | - | - | - |
| 0.1908 | 3705 | 3.0703 | 3.0635 | 0.6968 (+0.1563) | 0.4048 (+0.0798) | 0.7557 (+0.2551) | 0.6191 (+0.1637) |
| 0.1928 | 3744 | 3.0029 | - | - | - | - | - |
| 0.1948 | 3783 | 3.0332 | - | - | - | - | - |
| 0.1968 | 3822 | 3.0108 | - | - | - | - | - |
| 0.1988 | 3861 | 2.9938 | - | - | - | - | - |
| 0.2008 | 3900 | 3.0066 | 2.9975 | 0.6912 (+0.1507) | 0.4134 (+0.0884) | 0.7395 (+0.2388) | 0.6147 (+0.1593) |
| 0.2028 | 3939 | 2.9843 | - | - | - | - | - |
| 0.2049 | 3978 | 2.9879 | - | - | - | - | - |
| 0.2069 | 4017 | 2.9536 | - | - | - | - | - |
| 0.2089 | 4056 | 2.9182 | - | - | - | - | - |
| 0.2109 | 4095 | 2.9533 | 2.9762 | 0.6691 (+0.1287) | 0.4090 (+0.0839) | 0.7537 (+0.2530) | 0.6106 (+0.1552) |
| 0.2129 | 4134 | 2.9203 | - | - | - | - | - |
| 0.2149 | 4173 | 2.8981 | - | - | - | - | - |
| 0.2169 | 4212 | 2.8901 | - | - | - | - | - |
| 0.2189 | 4251 | 2.8543 | - | - | - | - | - |
| 0.2209 | 4290 | 2.8381 | 2.9045 | 0.6855 (+0.1451) | 0.4110 (+0.0859) | 0.7697 (+0.2690) | 0.6220 (+0.1667) |
| 0.2229 | 4329 | 2.824 | - | - | - | - | - |
| 0.2249 | 4368 | 2.8226 | - | - | - | - | - |
| 0.2269 | 4407 | 2.7882 | - | - | - | - | - |
| 0.2290 | 4446 | 2.803 | - | - | - | - | - |
| 0.2310 | 4485 | 2.7646 | 2.8263 | 0.6939 (+0.1534) | 0.4109 (+0.0858) | 0.7636 (+0.2629) | 0.6228 (+0.1674) |
| 0.2330 | 4524 | 2.8027 | - | - | - | - | - |
| 0.2350 | 4563 | 2.7702 | - | - | - | - | - |
| 0.2370 | 4602 | 2.8005 | - | - | - | - | - |
| 0.2390 | 4641 | 2.7758 | - | - | - | - | - |
| 0.2410 | 4680 | 2.731 | 2.7957 | 0.6932 (+0.1528) | 0.4106 (+0.0855) | 0.7728 (+0.2722) | 0.6255 (+0.1702) |
| 0.2430 | 4719 | 2.7704 | - | - | - | - | - |
| 0.2450 | 4758 | 2.7057 | - | - | - | - | - |
| 0.2470 | 4797 | 2.7292 | - | - | - | - | - |
| 0.2490 | 4836 | 2.7203 | - | - | - | - | - |
| 0.2510 | 4875 | 2.7036 | 2.7686 | 0.6816 (+0.1412) | 0.4126 (+0.0875) | 0.7601 (+0.2595) | 0.6181 (+0.1627) |
| 0.2531 | 4914 | 2.6795 | - | - | - | - | - |
| 0.2551 | 4953 | 2.6726 | - | - | - | - | - |
| 0.2571 | 4992 | 2.6835 | - | - | - | - | - |
| 0.2591 | 5031 | 2.6168 | - | - | - | - | - |
| 0.2611 | 5070 | 2.6506 | 2.6770 | 0.6869 (+0.1465) | 0.4176 (+0.0926) | 0.7565 (+0.2559) | 0.6203 (+0.1650) |
| 0.2631 | 5109 | 2.6123 | - | - | - | - | - |
| 0.2651 | 5148 | 2.6509 | - | - | - | - | - |
| 0.2671 | 5187 | 2.6128 | - | - | - | - | - |
| 0.2691 | 5226 | 2.6309 | - | - | - | - | - |
| 0.2711 | 5265 | 2.6047 | 2.6134 | 0.7008 (+0.1604) | 0.4085 (+0.0834) | 0.7692 (+0.2686) | 0.6262 (+0.1708) |
| 0.2731 | 5304 | 2.5688 | - | - | - | - | - |
| 0.2751 | 5343 | 2.562 | - | - | - | - | - |
| 0.2772 | 5382 | 2.5622 | - | - | - | - | - |
| 0.2792 | 5421 | 2.5653 | - | - | - | - | - |
| 0.2812 | 5460 | 2.5825 | 2.6112 | 0.7112 (+0.1708) | 0.4150 (+0.0899) | 0.7791 (+0.2784) | 0.6351 (+0.1797) |
| 0.2832 | 5499 | 2.5503 | - | - | - | - | - |
| 0.2852 | 5538 | 2.5474 | - | - | - | - | - |
| 0.2872 | 5577 | 2.5231 | - | - | - | - | - |
| 0.2892 | 5616 | 2.5094 | - | - | - | - | - |
| 0.2912 | 5655 | 2.5419 | 2.5872 | 0.6977 (+0.1573) | 0.4098 (+0.0848) | 0.7765 (+0.2758) | 0.6280 (+0.1726) |
| 0.2932 | 5694 | 2.5096 | - | - | - | - | - |
| 0.2952 | 5733 | 2.498 | - | - | - | - | - |
| 0.2972 | 5772 | 2.4845 | - | - | - | - | - |
| 0.2992 | 5811 | 2.5081 | - | - | - | - | - |
| 0.3013 | 5850 | 2.4539 | 2.5492 | 0.6914 (+0.1510) | 0.4077 (+0.0826) | 0.7692 (+0.2686) | 0.6228 (+0.1674) |
| 0.3033 | 5889 | 2.5094 | - | - | - | - | - |
| 0.3053 | 5928 | 2.4857 | - | - | - | - | - |
| 0.3073 | 5967 | 2.4578 | - | - | - | - | - |
| 0.3093 | 6006 | 2.4334 | - | - | - | - | - |
| 0.3113 | 6045 | 2.4232 | 2.5261 | 0.6861 (+0.1456) | 0.4061 (+0.0811) | 0.7819 (+0.2812) | 0.6247 (+0.1693) |
| 0.3133 | 6084 | 2.4369 | - | - | - | - | - |
| 0.3153 | 6123 | 2.4409 | - | - | - | - | - |
| 0.3173 | 6162 | 2.4275 | - | - | - | - | - |
| 0.3193 | 6201 | 2.4158 | - | - | - | - | - |
| 0.3213 | 6240 | 2.3969 | 2.4588 | 0.6853 (+0.1449) | 0.4148 (+0.0898) | 0.7730 (+0.2724) | 0.6244 (+0.1690) |
| 0.3233 | 6279 | 2.4116 | - | - | - | - | - |
| 0.3254 | 6318 | 2.3865 | - | - | - | - | - |
| 0.3274 | 6357 | 2.3852 | - | - | - | - | - |
| 0.3294 | 6396 | 2.3893 | - | - | - | - | - |
| 0.3314 | 6435 | 2.3782 | 2.4398 | 0.6888 (+0.1484) | 0.4207 (+0.0956) | 0.7665 (+0.2658) | 0.6253 (+0.1699) |
| 0.3334 | 6474 | 2.39 | - | - | - | - | - |
| 0.3354 | 6513 | 2.3934 | - | - | - | - | - |
| 0.3374 | 6552 | 2.3467 | - | - | - | - | - |
| 0.3394 | 6591 | 2.3441 | - | - | - | - | - |
| 0.3414 | 6630 | 2.3521 | 2.4294 | 0.6934 (+0.1530) | 0.4136 (+0.0886) | 0.7658 (+0.2652) | 0.6243 (+0.1689) |
| 0.3434 | 6669 | 2.3321 | - | - | - | - | - |
| 0.3454 | 6708 | 2.3436 | - | - | - | - | - |
| 0.3474 | 6747 | 2.3598 | - | - | - | - | - |
| 0.3495 | 6786 | 2.3374 | - | - | - | - | - |
| 0.3515 | 6825 | 2.322 | 2.3748 | 0.6744 (+0.1340) | 0.4149 (+0.0899) | 0.7765 (+0.2758) | 0.6219 (+0.1666) |
| 0.3535 | 6864 | 2.2969 | - | - | - | - | - |
| 0.3555 | 6903 | 2.3072 | - | - | - | - | - |
| 0.3575 | 6942 | 2.3367 | - | - | - | - | - |
| 0.3595 | 6981 | 2.2566 | - | - | - | - | - |
| 0.3615 | 7020 | 2.309 | 2.3426 | 0.6936 (+0.1532) | 0.4072 (+0.0821) | 0.7620 (+0.2613) | 0.6209 (+0.1655) |
| 0.3635 | 7059 | 2.2796 | - | - | - | - | - |
| 0.3655 | 7098 | 2.2858 | - | - | - | - | - |
| 0.3675 | 7137 | 2.2847 | - | - | - | - | - |
| 0.3695 | 7176 | 2.2828 | - | - | - | - | - |
| 0.3715 | 7215 | 2.2553 | 2.3401 | 0.6786 (+0.1382) | 0.4117 (+0.0866) | 0.7742 (+0.2736) | 0.6215 (+0.1661) |
| 0.3736 | 7254 | 2.251 | - | - | - | - | - |
| 0.3756 | 7293 | 2.2522 | - | - | - | - | - |
| 0.3776 | 7332 | 2.2303 | - | - | - | - | - |
| 0.3796 | 7371 | 2.2658 | - | - | - | - | - |
| 0.3816 | 7410 | 2.2538 | 2.2876 | 0.6835 (+0.1431) | 0.4216 (+0.0965) | 0.7750 (+0.2743) | 0.6267 (+0.1713) |
| 0.3836 | 7449 | 2.2191 | - | - | - | - | - |
| 0.3856 | 7488 | 2.2149 | - | - | - | - | - |
| 0.3876 | 7527 | 2.2367 | - | - | - | - | - |
| 0.3896 | 7566 | 2.228 | - | - | - | - | - |
| 0.3916 | 7605 | 2.1954 | 2.2534 | 0.6911 (+0.1507) | 0.4166 (+0.0916) | 0.7782 (+0.2776) | 0.6287 (+0.1733) |
| 0.3936 | 7644 | 2.2174 | - | - | - | - | - |
| 0.3956 | 7683 | 2.2078 | - | - | - | - | - |
| 0.3977 | 7722 | 2.1953 | - | - | - | - | - |
| 0.3997 | 7761 | 2.1835 | - | - | - | - | - |
| 0.4017 | 7800 | 2.1734 | 2.2396 | 0.6874 (+0.1470) | 0.4133 (+0.0883) | 0.7803 (+0.2797) | 0.6270 (+0.1717) |
| 0.4037 | 7839 | 2.1799 | - | - | - | - | - |
| 0.4057 | 7878 | 2.1893 | - | - | - | - | - |
| 0.4077 | 7917 | 2.1848 | - | - | - | - | - |
| 0.4097 | 7956 | 2.1963 | - | - | - | - | - |
| 0.4117 | 7995 | 2.1902 | 2.2266 | 0.6799 (+0.1394) | 0.4090 (+0.0840) | 0.7798 (+0.2792) | 0.6229 (+0.1675) |
| 0.4137 | 8034 | 2.1684 | - | - | - | - | - |
| 0.4157 | 8073 | 2.1832 | - | - | - | - | - |
| 0.4177 | 8112 | 2.1739 | - | - | - | - | - |
| 0.4197 | 8151 | 2.1775 | - | - | - | - | - |
| 0.4218 | 8190 | 2.159 | 2.2078 | 0.6786 (+0.1382) | 0.4176 (+0.0926) | 0.7772 (+0.2765) | 0.6245 (+0.1691) |
| 0.4238 | 8229 | 2.1666 | - | - | - | - | - |
| 0.4258 | 8268 | 2.1504 | - | - | - | - | - |
| 0.4278 | 8307 | 2.1493 | - | - | - | - | - |
| 0.4298 | 8346 | 2.1261 | - | - | - | - | - |
| 0.4318 | 8385 | 2.1128 | 2.2293 | 0.6793 (+0.1388) | 0.4128 (+0.0878) | 0.7794 (+0.2787) | 0.6238 (+0.1685) |
| 0.4338 | 8424 | 2.1122 | - | - | - | - | - |
| 0.4358 | 8463 | 2.1399 | - | - | - | - | - |
| 0.4378 | 8502 | 2.1207 | - | - | - | - | - |
| 0.4398 | 8541 | 2.1331 | - | - | - | - | - |
| 0.4418 | 8580 | 2.0973 | 2.1808 | 0.6778 (+0.1374) | 0.4193 (+0.0943) | 0.7746 (+0.2739) | 0.6239 (+0.1685) |
| 0.4438 | 8619 | 2.077 | - | - | - | - | - |
| 0.4459 | 8658 | 2.0849 | - | - | - | - | - |
| 0.4479 | 8697 | 2.1252 | - | - | - | - | - |
| 0.4499 | 8736 | 2.102 | - | - | - | - | - |
| 0.4519 | 8775 | 2.0985 | 2.1332 | 0.6812 (+0.1407) | 0.4204 (+0.0954) | 0.7697 (+0.2690) | 0.6238 (+0.1684) |
| 0.4539 | 8814 | 2.1176 | - | - | - | - | - |
| 0.4559 | 8853 | 2.0672 | - | - | - | - | - |
| 0.4579 | 8892 | 2.0878 | - | - | - | - | - |
| 0.4599 | 8931 | 2.0629 | - | - | - | - | - |
| 0.4619 | 8970 | 2.0944 | 2.1212 | 0.6724 (+0.1319) | 0.4086 (+0.0835) | 0.7843 (+0.2837) | 0.6218 (+0.1664) |
| 0.4639 | 9009 | 2.0635 | - | - | - | - | - |
| 0.4659 | 9048 | 2.0716 | - | - | - | - | - |
| 0.4679 | 9087 | 2.034 | - | - | - | - | - |
| 0.4700 | 9126 | 2.0505 | - | - | - | - | - |
| 0.4720 | 9165 | 2.0766 | 2.1156 | 0.6825 (+0.1421) | 0.4120 (+0.0869) | 0.7747 (+0.2740) | 0.6231 (+0.1677) |
| 0.4740 | 9204 | 2.0642 | - | - | - | - | - |
| 0.4760 | 9243 | 2.0357 | - | - | - | - | - |
| 0.4780 | 9282 | 2.049 | - | - | - | - | - |
| 0.4800 | 9321 | 2.0513 | - | - | - | - | - |
| 0.4820 | 9360 | 2.0534 | 2.0917 | 0.6812 (+0.1408) | 0.4148 (+0.0898) | 0.7662 (+0.2656) | 0.6207 (+0.1654) |
| 0.4840 | 9399 | 2.0699 | - | - | - | - | - |
| 0.4860 | 9438 | 2.0359 | - | - | - | - | - |
| 0.4880 | 9477 | 2.0249 | - | - | - | - | - |
| 0.4900 | 9516 | 2.0339 | - | - | - | - | - |
| 0.4920 | 9555 | 2.0361 | 2.0833 | 0.6799 (+0.1395) | 0.4118 (+0.0868) | 0.7776 (+0.2769) | 0.6231 (+0.1677) |
| 0.4941 | 9594 | 2.0137 | - | - | - | - | - |
| 0.4961 | 9633 | 2.0315 | - | - | - | - | - |
| 0.4981 | 9672 | 2.0426 | - | - | - | - | - |
| 0.5001 | 9711 | 2.014 | - | - | - | - | - |
| 0.5021 | 9750 | 2.0134 | 2.0687 | 0.6712 (+0.1308) | 0.4088 (+0.0838) | 0.7770 (+0.2763) | 0.6190 (+0.1636) |
| 0.5041 | 9789 | 2.0128 | - | - | - | - | - |
| 0.5061 | 9828 | 1.9821 | - | - | - | - | - |
| 0.5081 | 9867 | 2.0124 | - | - | - | - | - |
| 0.5101 | 9906 | 2.0037 | - | - | - | - | - |
| 0.5121 | 9945 | 1.9822 | 2.0401 | 0.6805 (+0.1400) | 0.4112 (+0.0862) | 0.7776 (+0.2770) | 0.6231 (+0.1677) |
| 0.5141 | 9984 | 1.9632 | - | - | - | - | - |
| 0.5161 | 10023 | 1.9762 | - | - | - | - | - |
| 0.5182 | 10062 | 1.9954 | - | - | - | - | - |
| 0.5202 | 10101 | 1.967 | - | - | - | - | - |
| 0.5222 | 10140 | 1.985 | 2.0337 | 0.6818 (+0.1414) | 0.4199 (+0.0948) | 0.7784 (+0.2778) | 0.6267 (+0.1713) |
| 0.5242 | 10179 | 2.0043 | - | - | - | - | - |
| 0.5262 | 10218 | 1.9889 | - | - | - | - | - |
| 0.5282 | 10257 | 1.9828 | - | - | - | - | - |
| 0.5302 | 10296 | 1.9869 | - | - | - | - | - |
| 0.5322 | 10335 | 1.9763 | 2.0604 | 0.6828 (+0.1423) | 0.4142 (+0.0892) | 0.7858 (+0.2851) | 0.6276 (+0.1722) |
| 0.5342 | 10374 | 1.9582 | - | - | - | - | - |
| 0.5362 | 10413 | 1.9501 | - | - | - | - | - |
| 0.5382 | 10452 | 1.9569 | - | - | - | - | - |
| 0.5402 | 10491 | 1.9494 | - | - | - | - | - |
| 0.5423 | 10530 | 1.9427 | 2.0265 | 0.6761 (+0.1357) | 0.4160 (+0.0909) | 0.7819 (+0.2813) | 0.6247 (+0.1693) |
| 0.5443 | 10569 | 1.9473 | - | - | - | - | - |
| 0.5463 | 10608 | 1.9429 | - | - | - | - | - |
| 0.5483 | 10647 | 1.9436 | - | - | - | - | - |
| 0.5503 | 10686 | 1.9487 | - | - | - | - | - |
| 0.5523 | 10725 | 1.9269 | 2.0151 | 0.6890 (+0.1485) | 0.4189 (+0.0938) | 0.7788 (+0.2781) | 0.6289 (+0.1735) |
| 0.5543 | 10764 | 1.9486 | - | - | - | - | - |
| 0.5563 | 10803 | 1.9384 | - | - | - | - | - |
| 0.5583 | 10842 | 1.9357 | - | - | - | - | - |
| 0.5603 | 10881 | 1.9419 | - | - | - | - | - |
| 0.5623 | 10920 | 1.9373 | 2.0122 | 0.6952 (+0.1548) | 0.4172 (+0.0922) | 0.7806 (+0.2800) | 0.6310 (+0.1756) |
| 0.5643 | 10959 | 1.926 | - | - | - | - | - |
| 0.5664 | 10998 | 1.9274 | - | - | - | - | - |
| 0.5684 | 11037 | 1.9355 | - | - | - | - | - |
| 0.5704 | 11076 | 1.946 | - | - | - | - | - |
| 0.5724 | 11115 | 1.9421 | 1.9579 | 0.6824 (+0.1420) | 0.4174 (+0.0923) | 0.7853 (+0.2847) | 0.6284 (+0.1730) |
| 0.5744 | 11154 | 1.9439 | - | - | - | - | - |
| 0.5764 | 11193 | 1.9087 | - | - | - | - | - |
| 0.5784 | 11232 | 1.9202 | - | - | - | - | - |
| 0.5804 | 11271 | 1.9002 | - | - | - | - | - |
| 0.5824 | 11310 | 1.9282 | 1.9565 | 0.6909 (+0.1505) | 0.4177 (+0.0926) | 0.7807 (+0.2801) | 0.6298 (+0.1744) |
| 0.5844 | 11349 | 1.9074 | - | - | - | - | - |
| 0.5864 | 11388 | 1.9147 | - | - | - | - | - |
| 0.5884 | 11427 | 1.9047 | - | - | - | - | - |
| 0.5905 | 11466 | 1.9015 | - | - | - | - | - |
| 0.5925 | 11505 | 1.8987 | 1.9409 | 0.6922 (+0.1518) | 0.4136 (+0.0885) | 0.7845 (+0.2838) | 0.6301 (+0.1747) |
| 0.5945 | 11544 | 1.8782 | - | - | - | - | - |
| 0.5965 | 11583 | 1.886 | - | - | - | - | - |
| 0.5985 | 11622 | 1.8867 | - | - | - | - | - |
| 0.6005 | 11661 | 1.8926 | - | - | - | - | - |
| 0.6025 | 11700 | 1.9055 | 1.9494 | 0.6803 (+0.1398) | 0.4102 (+0.0851) | 0.7733 (+0.2726) | 0.6212 (+0.1659) |
| 0.6045 | 11739 | 1.8789 | - | - | - | - | - |
| 0.6065 | 11778 | 1.8646 | - | - | - | - | - |
| 0.6085 | 11817 | 1.8668 | - | - | - | - | - |
| 0.6105 | 11856 | 1.8993 | - | - | - | - | - |
| 0.6125 | 11895 | 1.8695 | 1.9470 | 0.6993 (+0.1589) | 0.4142 (+0.0892) | 0.7709 (+0.2702) | 0.6281 (+0.1728) |
| 0.6146 | 11934 | 1.8739 | - | - | - | - | - |
| 0.6166 | 11973 | 1.8665 | - | - | - | - | - |
| 0.6186 | 12012 | 1.8774 | - | - | - | - | - |
| 0.6206 | 12051 | 1.8693 | - | - | - | - | - |
| 0.6226 | 12090 | 1.8559 | 1.9079 | 0.6954 (+0.1550) | 0.4127 (+0.0876) | 0.7776 (+0.2769) | 0.6285 (+0.1732) |
| 0.6246 | 12129 | 1.8625 | - | - | - | - | - |
| 0.6266 | 12168 | 1.8465 | - | - | - | - | - |
| 0.6286 | 12207 | 1.8396 | - | - | - | - | - |
| 0.6306 | 12246 | 1.8411 | - | - | - | - | - |
| **0.6326** | **12285** | **1.8228** | **1.8984** | **0.7086 (+0.1682)** | **0.4101 (+0.0850)** | **0.7878 (+0.2871)** | **0.6355 (+0.1801)** |
| 0.6346 | 12324 | 1.8404 | - | - | - | - | - |
| 0.6366 | 12363 | 1.8529 | - | - | - | - | - |
| 0.6387 | 12402 | 1.8297 | - | - | - | - | - |
| 0.6407 | 12441 | 1.8603 | - | - | - | - | - |
| 0.6427 | 12480 | 1.8558 | 1.8605 | 0.6973 (+0.1568) | 0.4120 (+0.0870) | 0.7781 (+0.2775) | 0.6292 (+0.1738) |
| 0.6447 | 12519 | 1.8367 | - | - | - | - | - |
| 0.6467 | 12558 | 1.8344 | - | - | - | - | - |
| 0.6487 | 12597 | 1.827 | - | - | - | - | - |
| 0.6507 | 12636 | 1.8061 | - | - | - | - | - |
| 0.6527 | 12675 | 1.8106 | 1.8806 | 0.6879 (+0.1474) | 0.4131 (+0.0880) | 0.7893 (+0.2886) | 0.6301 (+0.1747) |
| 0.6547 | 12714 | 1.8291 | - | - | - | - | - |
| 0.6567 | 12753 | 1.8322 | - | - | - | - | - |
| 0.6587 | 12792 | 1.8381 | - | - | - | - | - |
| 0.6607 | 12831 | 1.8283 | - | - | - | - | - |
| 0.6628 | 12870 | 1.8241 | 1.8569 | 0.6816 (+0.1412) | 0.4145 (+0.0894) | 0.7855 (+0.2848) | 0.6272 (+0.1718) |
| 0.6648 | 12909 | 1.8012 | - | - | - | - | - |
| 0.6668 | 12948 | 1.8065 | - | - | - | - | - |
| 0.6688 | 12987 | 1.8149 | - | - | - | - | - |
| 0.6708 | 13026 | 1.8178 | - | - | - | - | - |
| 0.6728 | 13065 | 1.8176 | 1.8597 | 0.6793 (+0.1389) | 0.4137 (+0.0886) | 0.7762 (+0.2756) | 0.6231 (+0.1677) |
| 0.6748 | 13104 | 1.8054 | - | - | - | - | - |
| 0.6768 | 13143 | 1.8084 | - | - | - | - | - |
| 0.6788 | 13182 | 1.8022 | - | - | - | - | - |
| 0.6808 | 13221 | 1.8323 | - | - | - | - | - |
| 0.6828 | 13260 | 1.8146 | 1.8353 | 0.6838 (+0.1434) | 0.4136 (+0.0886) | 0.7769 (+0.2763) | 0.6248 (+0.1694) |
| 0.6848 | 13299 | 1.7947 | - | - | - | - | - |
| 0.6869 | 13338 | 1.8052 | - | - | - | - | - |
| 0.6889 | 13377 | 1.7999 | - | - | - | - | - |
| 0.6909 | 13416 | 1.7774 | - | - | - | - | - |
| 0.6929 | 13455 | 1.7882 | 1.8434 | 0.6859 (+0.1455) | 0.4160 (+0.0909) | 0.7857 (+0.2851) | 0.6292 (+0.1738) |
| 0.6949 | 13494 | 1.8212 | - | - | - | - | - |
| 0.6969 | 13533 | 1.8034 | - | - | - | - | - |
| 0.6989 | 13572 | 1.7814 | - | - | - | - | - |
| 0.7009 | 13611 | 1.7817 | - | - | - | - | - |
| 0.7029 | 13650 | 1.7788 | 1.8305 | 0.6828 (+0.1424) | 0.4160 (+0.0909) | 0.7843 (+0.2837) | 0.6277 (+0.1723) |
| 0.7049 | 13689 | 1.7749 | - | - | - | - | - |
| 0.7069 | 13728 | 1.7762 | - | - | - | - | - |
| 0.7089 | 13767 | 1.7956 | - | - | - | - | - |
| 0.7110 | 13806 | 1.7737 | - | - | - | - | - |
| 0.7130 | 13845 | 1.767 | 1.8205 | 0.6821 (+0.1417) | 0.4161 (+0.0911) | 0.7764 (+0.2758) | 0.6249 (+0.1695) |
| 0.7150 | 13884 | 1.7833 | - | - | - | - | - |
| 0.7170 | 13923 | 1.76 | - | - | - | - | - |
| 0.7190 | 13962 | 1.7812 | - | - | - | - | - |
| 0.7210 | 14001 | 1.7723 | - | - | - | - | - |
| 0.7230 | 14040 | 1.7756 | 1.8074 | 0.6761 (+0.1357) | 0.4188 (+0.0938) | 0.7756 (+0.2749) | 0.6235 (+0.1681) |
| 0.7250 | 14079 | 1.7618 | - | - | - | - | - |
| 0.7270 | 14118 | 1.7868 | - | - | - | - | - |
| 0.7290 | 14157 | 1.7676 | - | - | - | - | - |
| 0.7310 | 14196 | 1.745 | - | - | - | - | - |
| 0.7330 | 14235 | 1.759 | 1.7857 | 0.6814 (+0.1410) | 0.4145 (+0.0895) | 0.7848 (+0.2842) | 0.6269 (+0.1716) |
| 0.7351 | 14274 | 1.7633 | - | - | - | - | - |
| 0.7371 | 14313 | 1.7682 | - | - | - | - | - |
| 0.7391 | 14352 | 1.7347 | - | - | - | - | - |
| 0.7411 | 14391 | 1.7544 | - | - | - | - | - |
| 0.7431 | 14430 | 1.7515 | 1.7866 | 0.6861 (+0.1456) | 0.4118 (+0.0868) | 0.7846 (+0.2839) | 0.6275 (+0.1721) |
| 0.7451 | 14469 | 1.7658 | - | - | - | - | - |
| 0.7471 | 14508 | 1.7686 | - | - | - | - | - |
| 0.7491 | 14547 | 1.7403 | - | - | - | - | - |
| 0.7511 | 14586 | 1.743 | - | - | - | - | - |
| 0.7531 | 14625 | 1.7328 | 1.7821 | 0.6783 (+0.1379) | 0.4142 (+0.0891) | 0.7875 (+0.2868) | 0.6267 (+0.1713) |
| 0.7551 | 14664 | 1.7328 | - | - | - | - | - |
| 0.7571 | 14703 | 1.7302 | - | - | - | - | - |
| 0.7592 | 14742 | 1.7258 | - | - | - | - | - |
| 0.7612 | 14781 | 1.7136 | - | - | - | - | - |
| 0.7632 | 14820 | 1.7339 | 1.7708 | 0.6806 (+0.1401) | 0.4184 (+0.0934) | 0.7856 (+0.2849) | 0.6282 (+0.1728) |
| 0.7652 | 14859 | 1.7527 | - | - | - | - | - |
| 0.7672 | 14898 | 1.7157 | - | - | - | - | - |
| 0.7692 | 14937 | 1.7425 | - | - | - | - | - |
| 0.7712 | 14976 | 1.7344 | - | - | - | - | - |
| 0.7732 | 15015 | 1.7537 | 1.7860 | 0.6797 (+0.1393) | 0.4144 (+0.0894) | 0.7869 (+0.2863) | 0.6270 (+0.1717) |
| 0.7752 | 15054 | 1.7145 | - | - | - | - | - |
| 0.7772 | 15093 | 1.7387 | - | - | - | - | - |
| 0.7792 | 15132 | 1.7206 | - | - | - | - | - |
| 0.7812 | 15171 | 1.713 | - | - | - | - | - |
| 0.7833 | 15210 | 1.7221 | 1.7682 | 0.6823 (+0.1419) | 0.4155 (+0.0905) | 0.7848 (+0.2841) | 0.6276 (+0.1722) |
| 0.7853 | 15249 | 1.7103 | - | - | - | - | - |
| 0.7873 | 15288 | 1.6986 | - | - | - | - | - |
| 0.7893 | 15327 | 1.6986 | - | - | - | - | - |
| 0.7913 | 15366 | 1.7086 | - | - | - | - | - |
| 0.7933 | 15405 | 1.713 | 1.7618 | 0.6802 (+0.1397) | 0.4179 (+0.0929) | 0.7821 (+0.2815) | 0.6267 (+0.1714) |
| 0.7953 | 15444 | 1.7137 | - | - | - | - | - |
| 0.7973 | 15483 | 1.6932 | - | - | - | - | - |
| 0.7993 | 15522 | 1.7143 | - | - | - | - | - |
| 0.8013 | 15561 | 1.7132 | - | - | - | - | - |
| 0.8033 | 15600 | 1.7474 | 1.7605 | 0.6804 (+0.1400) | 0.4132 (+0.0881) | 0.7868 (+0.2862) | 0.6268 (+0.1714) |
| 0.8053 | 15639 | 1.7012 | - | - | - | - | - |
| 0.8074 | 15678 | 1.7152 | - | - | - | - | - |
| 0.8094 | 15717 | 1.7041 | - | - | - | - | - |
| 0.8114 | 15756 | 1.7061 | - | - | - | - | - |
| 0.8134 | 15795 | 1.7087 | 1.7618 | 0.6807 (+0.1403) | 0.4150 (+0.0900) | 0.7839 (+0.2832) | 0.6265 (+0.1712) |
| 0.8154 | 15834 | 1.7106 | - | - | - | - | - |
| 0.8174 | 15873 | 1.7276 | - | - | - | - | - |
| 0.8194 | 15912 | 1.7162 | - | - | - | - | - |
| 0.8214 | 15951 | 1.6997 | - | - | - | - | - |
| 0.8234 | 15990 | 1.6934 | 1.7439 | 0.6872 (+0.1468) | 0.4144 (+0.0893) | 0.7825 (+0.2819) | 0.6280 (+0.1727) |
| 0.8254 | 16029 | 1.7321 | - | - | - | - | - |
| 0.8274 | 16068 | 1.6881 | - | - | - | - | - |
| 0.8294 | 16107 | 1.6835 | - | - | - | - | - |
| 0.8315 | 16146 | 1.6876 | - | - | - | - | - |
| 0.8335 | 16185 | 1.687 | 1.7391 | 0.6730 (+0.1326) | 0.4175 (+0.0925) | 0.7830 (+0.2824) | 0.6245 (+0.1692) |
| 0.8355 | 16224 | 1.6856 | - | - | - | - | - |
| 0.8375 | 16263 | 1.6908 | - | - | - | - | - |
| 0.8395 | 16302 | 1.7027 | - | - | - | - | - |
| 0.8415 | 16341 | 1.6806 | - | - | - | - | - |
| 0.8435 | 16380 | 1.7118 | 1.7440 | 0.6715 (+0.1311) | 0.4188 (+0.0937) | 0.7858 (+0.2851) | 0.6254 (+0.1700) |
| 0.8455 | 16419 | 1.6945 | - | - | - | - | - |
| 0.8475 | 16458 | 1.6611 | - | - | - | - | - |
| 0.8495 | 16497 | 1.7015 | - | - | - | - | - |
| 0.8515 | 16536 | 1.6846 | - | - | - | - | - |
| 0.8535 | 16575 | 1.6866 | 1.7254 | 0.6719 (+0.1315) | 0.4201 (+0.0951) | 0.7813 (+0.2806) | 0.6244 (+0.1691) |
| 0.8556 | 16614 | 1.6721 | - | - | - | - | - |
| 0.8576 | 16653 | 1.6785 | - | - | - | - | - |
| 0.8596 | 16692 | 1.693 | - | - | - | - | - |
| 0.8616 | 16731 | 1.674 | - | - | - | - | - |
| 0.8636 | 16770 | 1.6973 | 1.7288 | 0.6737 (+0.1332) | 0.4158 (+0.0907) | 0.7899 (+0.2893) | 0.6265 (+0.1711) |
| 0.8656 | 16809 | 1.6654 | - | - | - | - | - |
| 0.8676 | 16848 | 1.6531 | - | - | - | - | - |
| 0.8696 | 16887 | 1.6858 | - | - | - | - | - |
| 0.8716 | 16926 | 1.6835 | - | - | - | - | - |
| 0.8736 | 16965 | 1.6908 | 1.7180 | 0.6741 (+0.1337) | 0.4182 (+0.0932) | 0.7851 (+0.2845) | 0.6258 (+0.1705) |
| 0.8756 | 17004 | 1.6721 | - | - | - | - | - |
| 0.8776 | 17043 | 1.6642 | - | - | - | - | - |
| 0.8797 | 17082 | 1.6769 | - | - | - | - | - |
| 0.8817 | 17121 | 1.6559 | - | - | - | - | - |
| 0.8837 | 17160 | 1.6478 | 1.7080 | 0.6737 (+0.1332) | 0.4169 (+0.0919) | 0.7836 (+0.2829) | 0.6247 (+0.1693) |
| 0.8857 | 17199 | 1.6801 | - | - | - | - | - |
| 0.8877 | 17238 | 1.6622 | - | - | - | - | - |
| 0.8897 | 17277 | 1.6741 | - | - | - | - | - |
| 0.8917 | 17316 | 1.6748 | - | - | - | - | - |
| 0.8937 | 17355 | 1.6895 | 1.6944 | 0.6728 (+0.1324) | 0.4198 (+0.0948) | 0.7800 (+0.2794) | 0.6242 (+0.1688) |
| 0.8957 | 17394 | 1.6604 | - | - | - | - | - |
| 0.8977 | 17433 | 1.6739 | - | - | - | - | - |
| 0.8997 | 17472 | 1.6865 | - | - | - | - | - |
| 0.9017 | 17511 | 1.6773 | - | - | - | - | - |
| 0.9038 | 17550 | 1.6481 | 1.6944 | 0.6724 (+0.1320) | 0.4167 (+0.0917) | 0.7836 (+0.2829) | 0.6242 (+0.1689) |
| 0.9058 | 17589 | 1.6395 | - | - | - | - | - |
| 0.9078 | 17628 | 1.6714 | - | - | - | - | - |
| 0.9098 | 17667 | 1.6506 | - | - | - | - | - |
| 0.9118 | 17706 | 1.6712 | - | - | - | - | - |
| 0.9138 | 17745 | 1.6525 | 1.6816 | 0.6734 (+0.1330) | 0.4173 (+0.0923) | 0.7836 (+0.2829) | 0.6248 (+0.1694) |
| 0.9158 | 17784 | 1.642 | - | - | - | - | - |
| 0.9178 | 17823 | 1.65 | - | - | - | - | - |
| 0.9198 | 17862 | 1.6658 | - | - | - | - | - |
| 0.9218 | 17901 | 1.6394 | - | - | - | - | - |
| 0.9238 | 17940 | 1.669 | 1.6846 | 0.6733 (+0.1329) | 0.4171 (+0.0920) | 0.7836 (+0.2829) | 0.6246 (+0.1693) |
| 0.9258 | 17979 | 1.6404 | - | - | - | - | - |
| 0.9279 | 18018 | 1.6499 | - | - | - | - | - |
| 0.9299 | 18057 | 1.6403 | - | - | - | - | - |
| 0.9319 | 18096 | 1.6645 | - | - | - | - | - |
| 0.9339 | 18135 | 1.6535 | 1.6847 | 0.6724 (+0.1320) | 0.4129 (+0.0879) | 0.7840 (+0.2834) | 0.6231 (+0.1678) |
| 0.9359 | 18174 | 1.6469 | - | - | - | - | - |
| 0.9379 | 18213 | 1.6519 | - | - | - | - | - |
| 0.9399 | 18252 | 1.6528 | - | - | - | - | - |
| 0.9419 | 18291 | 1.6473 | - | - | - | - | - |
| 0.9439 | 18330 | 1.6154 | 1.6870 | 0.6782 (+0.1378) | 0.4158 (+0.0908) | 0.7848 (+0.2842) | 0.6263 (+0.1709) |
| 0.9459 | 18369 | 1.6364 | - | - | - | - | - |
| 0.9479 | 18408 | 1.6484 | - | - | - | - | - |
| 0.9499 | 18447 | 1.6479 | - | - | - | - | - |
| 0.9520 | 18486 | 1.6468 | - | - | - | - | - |
| 0.9540 | 18525 | 1.637 | 1.6772 | 0.6802 (+0.1397) | 0.4172 (+0.0922) | 0.7838 (+0.2832) | 0.6271 (+0.1717) |
| 0.9560 | 18564 | 1.6481 | - | - | - | - | - |
| 0.9580 | 18603 | 1.6474 | - | - | - | - | - |
| 0.9600 | 18642 | 1.634 | - | - | - | - | - |
| 0.9620 | 18681 | 1.6476 | - | - | - | - | - |
| 0.9640 | 18720 | 1.6195 | 1.6834 | 0.6810 (+0.1406) | 0.4159 (+0.0909) | 0.7837 (+0.2830) | 0.6269 (+0.1715) |
| 0.9660 | 18759 | 1.6725 | - | - | - | - | - |
| 0.9680 | 18798 | 1.6448 | - | - | - | - | - |
| 0.9700 | 18837 | 1.6292 | - | - | - | - | - |
| 0.9720 | 18876 | 1.6631 | - | - | - | - | - |
| 0.9740 | 18915 | 1.6573 | 1.6776 | 0.6724 (+0.1320) | 0.4133 (+0.0882) | 0.7838 (+0.2832) | 0.6232 (+0.1678) |
| 0.9761 | 18954 | 1.6358 | - | - | - | - | - |
| 0.9781 | 18993 | 1.6256 | - | - | - | - | - |
| 0.9801 | 19032 | 1.6126 | - | - | - | - | - |
| 0.9821 | 19071 | 1.6428 | - | - | - | - | - |
| 0.9841 | 19110 | 1.6498 | 1.6770 | 0.6724 (+0.1320) | 0.4148 (+0.0898) | 0.7832 (+0.2825) | 0.6235 (+0.1681) |
| 0.9861 | 19149 | 1.6528 | - | - | - | - | - |
| 0.9881 | 19188 | 1.6417 | - | - | - | - | - |
| 0.9901 | 19227 | 1.6341 | - | - | - | - | - |
| 0.9921 | 19266 | 1.6444 | - | - | - | - | - |
| 0.9941 | 19305 | 1.6509 | 1.6735 | 0.6724 (+0.1320) | 0.4148 (+0.0898) | 0.7838 (+0.2832) | 0.6237 (+0.1683) |
| 0.9961 | 19344 | 1.6705 | - | - | - | - | - |
| 0.9981 | 19383 | 1.6433 | - | - | - | - | - |
| -1 | -1 | - | - | 0.7086 (+0.1682) | 0.4101 (+0.0850) | 0.7878 (+0.2871) | 0.6355 (+0.1801) |
* The bold row denotes the saved checkpoint.
</details>
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 13.064 kWh
- **Carbon Emitted**: 4.822 kg of CO2
- **Hours Used**: 2.996 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 8 x NVIDIA H100 80GB HBM3
- **CPU Model**: AMD EPYC 7R13 Processor
- **RAM Size**: 1999.99 GB
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.9.1+cu126
- Accelerate: 1.12.0
- Datasets: 4.4.1
- Tokenizers: 0.22.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MarginMSELoss
```bibtex
@misc{hofstätter2021improving,
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
year={2021},
eprint={2010.02666},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |