Commit
·
aadb993
1
Parent(s):
3e442e7
Delete stable_diffusion_custom_v4_1.py
Browse files- stable_diffusion_custom_v4_1.py +0 -795
stable_diffusion_custom_v4_1.py
DELETED
|
@@ -1,795 +0,0 @@
|
|
| 1 |
-
import random
|
| 2 |
-
from diffusers import StableDiffusionPipeline
|
| 3 |
-
# from diffusers.schedulers.scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
|
| 4 |
-
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput, AutoencoderKL, CLIPTextModel, CLIPTokenizer, UNet2DConditionModel, KarrasDiffusionSchedulers, StableDiffusionSafetyChecker, CLIPImageProcessor
|
| 5 |
-
from compel import Compel
|
| 6 |
-
from onediff.utils.tokenizer import TextualInversionLoaderMixin, MultiTokenCLIPTokenizer
|
| 7 |
-
import torch
|
| 8 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
| 9 |
-
from dynamicprompts.generators import RandomPromptGenerator
|
| 10 |
-
import time
|
| 11 |
-
from compel import Compel
|
| 12 |
-
from onediff.utils.prompt_parser import ScheduledPromptConditioning
|
| 13 |
-
from onediff.utils.prompt_parser import get_learned_conditioning_prompt_schedules
|
| 14 |
-
from dynamicprompts.generators import RandomPromptGenerator
|
| 15 |
-
import tqdm
|
| 16 |
-
from cachetools import LRUCache
|
| 17 |
-
from onediff.utils.image_processor import VaeImageProcessor
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
class CustomStableDiffusionPipeline4_1(TextualInversionLoaderMixin, StableDiffusionPipeline):
|
| 21 |
-
def __init__(
|
| 22 |
-
self,
|
| 23 |
-
vae: AutoencoderKL,
|
| 24 |
-
text_encoder: CLIPTextModel,
|
| 25 |
-
tokenizer: CLIPTokenizer,
|
| 26 |
-
unet: UNet2DConditionModel,
|
| 27 |
-
scheduler: KarrasDiffusionSchedulers,
|
| 28 |
-
safety_checker: StableDiffusionSafetyChecker,
|
| 29 |
-
feature_extractor: CLIPImageProcessor,
|
| 30 |
-
requires_safety_checker: bool = True,
|
| 31 |
-
prompt_cache_size: int = 1024,
|
| 32 |
-
prompt_cache_ttl: int = 60 * 2,
|
| 33 |
-
) -> None:
|
| 34 |
-
super().__init__(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler,
|
| 35 |
-
safety_checker=safety_checker, feature_extractor=feature_extractor, requires_safety_checker=requires_safety_checker)
|
| 36 |
-
|
| 37 |
-
self.vae_scale_factor = 2 ** (
|
| 38 |
-
len(self.vae.config.block_out_channels) - 1)
|
| 39 |
-
self.image_processor = VaeImageProcessor(
|
| 40 |
-
vae_scale_factor=self.vae_scale_factor)
|
| 41 |
-
self.register_to_config(
|
| 42 |
-
requires_safety_checker=requires_safety_checker)
|
| 43 |
-
|
| 44 |
-
self.compel = Compel(tokenizer=self.tokenizer,
|
| 45 |
-
text_encoder=self.text_encoder, truncate_long_prompts=False)
|
| 46 |
-
self.cache = LRUCache(maxsize=prompt_cache_size)
|
| 47 |
-
|
| 48 |
-
self.cached_uc = [None, None]
|
| 49 |
-
self.cached_c = [None, None]
|
| 50 |
-
|
| 51 |
-
self.prompt_handler = None
|
| 52 |
-
|
| 53 |
-
def build_scheduled_cond(self, prompt, steps, key):
|
| 54 |
-
prompt_schedule = get_learned_conditioning_prompt_schedules([prompt], steps)[
|
| 55 |
-
0]
|
| 56 |
-
|
| 57 |
-
cached = self.cache.get(key, None)
|
| 58 |
-
if cached is not None:
|
| 59 |
-
return cached
|
| 60 |
-
|
| 61 |
-
texts = [x[1] for x in prompt_schedule]
|
| 62 |
-
conds = [self.compel.build_conditioning_tensor(
|
| 63 |
-
text).to('cpu') for text in texts]
|
| 64 |
-
|
| 65 |
-
cond_schedule = []
|
| 66 |
-
for i, s in enumerate(prompt_schedule):
|
| 67 |
-
cond_schedule.append(ScheduledPromptConditioning(s[0], conds[i]))
|
| 68 |
-
|
| 69 |
-
self.cache[key] = cond_schedule
|
| 70 |
-
return cond_schedule
|
| 71 |
-
|
| 72 |
-
def initialize_magic_prompt_cache(self, pos_prompt_template: str, plain_prompt_template: str, neg_prompt_template: str, num_to_generate: int, steps: int):
|
| 73 |
-
r"""
|
| 74 |
-
Initializes the magic prompt cache for the forward pass.
|
| 75 |
-
Must be called immedaitely after Compel is loaded and embeds are initalized.
|
| 76 |
-
"""
|
| 77 |
-
rpg = RandomPromptGenerator(ignore_whitespace=True, seed=555)
|
| 78 |
-
positive_prompts = rpg.generate(
|
| 79 |
-
template=pos_prompt_template, num_images=num_to_generate)
|
| 80 |
-
scheduled_conds = []
|
| 81 |
-
with torch.no_grad():
|
| 82 |
-
cache = {}
|
| 83 |
-
for i in tqdm.tqdm(range(len(positive_prompts))):
|
| 84 |
-
scheduled_conds.append(self.build_scheduled_cond(
|
| 85 |
-
positive_prompts[i], steps, cache))
|
| 86 |
-
|
| 87 |
-
plain_scheduled_cond = self.build_scheduled_cond(
|
| 88 |
-
plain_prompt_template, steps, cache)
|
| 89 |
-
|
| 90 |
-
scheduled_uncond = self.build_scheduled_cond(
|
| 91 |
-
neg_prompt_template, steps, cache)
|
| 92 |
-
|
| 93 |
-
self.scheduled_conds = scheduled_conds
|
| 94 |
-
self.plain_scheduled_cond = plain_scheduled_cond
|
| 95 |
-
self.scheduled_uncond = scheduled_uncond
|
| 96 |
-
|
| 97 |
-
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
| 98 |
-
r"""
|
| 99 |
-
Encodes the prompt into text encoder hidden states.
|
| 100 |
-
|
| 101 |
-
Args:
|
| 102 |
-
prompt (`str` or `list(int)`):
|
| 103 |
-
prompt to be encoded
|
| 104 |
-
device: (`torch.device`):
|
| 105 |
-
torch device
|
| 106 |
-
num_images_per_prompt (`int`):
|
| 107 |
-
number of images that should be generated per prompt
|
| 108 |
-
do_classifier_free_guidance (`bool`):
|
| 109 |
-
whether to use classifier free guidance or not
|
| 110 |
-
negative_prompt (`str` or `List[str]`):
|
| 111 |
-
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 112 |
-
if `guidance_scale` is less than `1`).
|
| 113 |
-
"""
|
| 114 |
-
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
| 115 |
-
|
| 116 |
-
text_inputs = self.tokenizer(
|
| 117 |
-
prompt,
|
| 118 |
-
padding="max_length",
|
| 119 |
-
max_length=self.tokenizer.model_max_length,
|
| 120 |
-
truncation=True,
|
| 121 |
-
return_tensors="np",
|
| 122 |
-
)
|
| 123 |
-
text_input_ids = text_inputs.input_ids
|
| 124 |
-
text_input_ids = torch.from_numpy(text_input_ids)
|
| 125 |
-
untruncated_ids = self.tokenizer(
|
| 126 |
-
prompt, padding="max_length", return_tensors="np").input_ids
|
| 127 |
-
untruncated_ids = torch.from_numpy(untruncated_ids)
|
| 128 |
-
|
| 129 |
-
if (
|
| 130 |
-
text_input_ids.shape == untruncated_ids.shape
|
| 131 |
-
and text_input_ids.numel() == untruncated_ids.numel()
|
| 132 |
-
and not torch.equal(text_input_ids, untruncated_ids)
|
| 133 |
-
):
|
| 134 |
-
removed_text = self.tokenizer.batch_decode(
|
| 135 |
-
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1])
|
| 136 |
-
logger.warning(
|
| 137 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 138 |
-
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 142 |
-
attention_mask = text_inputs.attention_mask.to(device)
|
| 143 |
-
else:
|
| 144 |
-
attention_mask = None
|
| 145 |
-
|
| 146 |
-
text_embeddings = self.text_encoder(
|
| 147 |
-
text_input_ids.to(device), attention_mask=attention_mask)
|
| 148 |
-
text_embeddings = text_embeddings[0]
|
| 149 |
-
|
| 150 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 151 |
-
bs_embed, seq_len, _ = text_embeddings.shape
|
| 152 |
-
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
| 153 |
-
text_embeddings = text_embeddings.view(
|
| 154 |
-
bs_embed * num_images_per_prompt, seq_len, -1)
|
| 155 |
-
|
| 156 |
-
# get unconditional embeddings for classifier free guidance
|
| 157 |
-
if do_classifier_free_guidance:
|
| 158 |
-
uncond_tokens: List[str]
|
| 159 |
-
if negative_prompt is None:
|
| 160 |
-
uncond_tokens = [""] * batch_size
|
| 161 |
-
elif type(prompt) is not type(negative_prompt):
|
| 162 |
-
raise TypeError(
|
| 163 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 164 |
-
f" {type(prompt)}."
|
| 165 |
-
)
|
| 166 |
-
elif isinstance(negative_prompt, str):
|
| 167 |
-
uncond_tokens = [negative_prompt]
|
| 168 |
-
elif batch_size != len(negative_prompt):
|
| 169 |
-
raise ValueError(
|
| 170 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 171 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 172 |
-
" the batch size of `prompt`."
|
| 173 |
-
)
|
| 174 |
-
else:
|
| 175 |
-
uncond_tokens = negative_prompt
|
| 176 |
-
|
| 177 |
-
max_length = text_input_ids.shape[-1]
|
| 178 |
-
uncond_input = self.tokenizer(
|
| 179 |
-
uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np",
|
| 180 |
-
)
|
| 181 |
-
|
| 182 |
-
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 183 |
-
attention_mask = torch.from_numpy(
|
| 184 |
-
uncond_input.attention_mask).to(device)
|
| 185 |
-
else:
|
| 186 |
-
attention_mask = None
|
| 187 |
-
|
| 188 |
-
uncond_embeddings = self.text_encoder(
|
| 189 |
-
torch.from_numpy(uncond_input.input_ids).to(device), attention_mask=attention_mask,
|
| 190 |
-
)
|
| 191 |
-
uncond_embeddings = uncond_embeddings[0]
|
| 192 |
-
|
| 193 |
-
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 194 |
-
seq_len = uncond_embeddings.shape[1]
|
| 195 |
-
uncond_embeddings = uncond_embeddings.repeat(
|
| 196 |
-
1, num_images_per_prompt, 1)
|
| 197 |
-
uncond_embeddings = uncond_embeddings.view(
|
| 198 |
-
batch_size * num_images_per_prompt, seq_len, -1)
|
| 199 |
-
|
| 200 |
-
# For classifier free guidance, we need to do two forward passes.
|
| 201 |
-
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 202 |
-
# to avoid doing two forward passes
|
| 203 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 204 |
-
|
| 205 |
-
return text_embeddings
|
| 206 |
-
|
| 207 |
-
def _encode_promptv2(
|
| 208 |
-
self,
|
| 209 |
-
prompt,
|
| 210 |
-
device,
|
| 211 |
-
num_images_per_prompt,
|
| 212 |
-
do_classifier_free_guidance,
|
| 213 |
-
negative_prompt=None,
|
| 214 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 215 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 216 |
-
):
|
| 217 |
-
|
| 218 |
-
if prompt is not None and isinstance(prompt, str):
|
| 219 |
-
batch_size = 1
|
| 220 |
-
elif prompt is not None and isinstance(prompt, list):
|
| 221 |
-
batch_size = len(prompt)
|
| 222 |
-
else:
|
| 223 |
-
batch_size = prompt_embeds.shape[0]
|
| 224 |
-
|
| 225 |
-
if prompt_embeds is None:
|
| 226 |
-
text_inputs = self.tokenizer(
|
| 227 |
-
prompt,
|
| 228 |
-
padding="max_length",
|
| 229 |
-
max_length=self.tokenizer.model_max_length,
|
| 230 |
-
truncation=True,
|
| 231 |
-
return_tensors="pt",
|
| 232 |
-
)
|
| 233 |
-
text_input_ids = text_inputs.input_ids
|
| 234 |
-
untruncated_ids = self.tokenizer(
|
| 235 |
-
prompt, padding="longest", return_tensors="pt").input_ids
|
| 236 |
-
|
| 237 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 238 |
-
text_input_ids, untruncated_ids
|
| 239 |
-
):
|
| 240 |
-
removed_text = self.tokenizer.batch_decode(
|
| 241 |
-
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
|
| 242 |
-
)
|
| 243 |
-
|
| 244 |
-
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 245 |
-
attention_mask = text_inputs.attention_mask.to(device)
|
| 246 |
-
else:
|
| 247 |
-
attention_mask = None
|
| 248 |
-
|
| 249 |
-
prompt_embeds = self.text_encoder(
|
| 250 |
-
text_input_ids.to(device),
|
| 251 |
-
attention_mask=attention_mask,
|
| 252 |
-
)
|
| 253 |
-
prompt_embeds = prompt_embeds[0]
|
| 254 |
-
|
| 255 |
-
prompt_embeds = prompt_embeds.to(
|
| 256 |
-
dtype=self.text_encoder.dtype, device=device)
|
| 257 |
-
|
| 258 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 259 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 260 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 261 |
-
prompt_embeds = prompt_embeds.view(
|
| 262 |
-
bs_embed * num_images_per_prompt, seq_len, -1)
|
| 263 |
-
|
| 264 |
-
# get unconditional embeddings for classifier free guidance
|
| 265 |
-
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 266 |
-
uncond_tokens: List[str]
|
| 267 |
-
if negative_prompt is None:
|
| 268 |
-
uncond_tokens = [""] * batch_size
|
| 269 |
-
elif type(prompt) is not type(negative_prompt):
|
| 270 |
-
raise TypeError(
|
| 271 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 272 |
-
f" {type(prompt)}."
|
| 273 |
-
)
|
| 274 |
-
elif isinstance(negative_prompt, str):
|
| 275 |
-
uncond_tokens = [negative_prompt]
|
| 276 |
-
elif batch_size != len(negative_prompt):
|
| 277 |
-
raise ValueError(
|
| 278 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 279 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 280 |
-
" the batch size of `prompt`."
|
| 281 |
-
)
|
| 282 |
-
else:
|
| 283 |
-
uncond_tokens = negative_prompt
|
| 284 |
-
|
| 285 |
-
max_length = prompt_embeds.shape[1]
|
| 286 |
-
uncond_input = self.tokenizer(
|
| 287 |
-
uncond_tokens,
|
| 288 |
-
padding="max_length",
|
| 289 |
-
max_length=max_length,
|
| 290 |
-
truncation=True,
|
| 291 |
-
return_tensors="pt",
|
| 292 |
-
)
|
| 293 |
-
|
| 294 |
-
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 295 |
-
attention_mask = uncond_input.attention_mask.to(device)
|
| 296 |
-
else:
|
| 297 |
-
attention_mask = None
|
| 298 |
-
|
| 299 |
-
negative_prompt_embeds = self.text_encoder(
|
| 300 |
-
uncond_input.input_ids.to(device),
|
| 301 |
-
attention_mask=attention_mask,
|
| 302 |
-
)
|
| 303 |
-
negative_prompt_embeds = negative_prompt_embeds[0]
|
| 304 |
-
|
| 305 |
-
if do_classifier_free_guidance:
|
| 306 |
-
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 307 |
-
seq_len = negative_prompt_embeds.shape[1]
|
| 308 |
-
|
| 309 |
-
negative_prompt_embeds = negative_prompt_embeds.to(
|
| 310 |
-
dtype=self.text_encoder.dtype, device=device)
|
| 311 |
-
|
| 312 |
-
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
| 313 |
-
1, num_images_per_prompt, 1)
|
| 314 |
-
negative_prompt_embeds = negative_prompt_embeds.view(
|
| 315 |
-
batch_size * num_images_per_prompt, seq_len, -1)
|
| 316 |
-
|
| 317 |
-
negative_prompt_embeds, prompt_embeds = self.compel.pad_conditioning_tensors_to_same_length(
|
| 318 |
-
[negative_prompt_embeds, prompt_embeds])
|
| 319 |
-
# For classifier free guidance, we need to do two forward passes.
|
| 320 |
-
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 321 |
-
# to avoid doing two forward passes
|
| 322 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 323 |
-
|
| 324 |
-
return prompt_embeds
|
| 325 |
-
|
| 326 |
-
def _pyramid_noise_like(self, noise, device, seed, iterations=6, discount=0.4):
|
| 327 |
-
gen = torch.manual_seed(seed)
|
| 328 |
-
# EDIT: w and h get over-written, rename for a different variant!
|
| 329 |
-
b, c, w, h = noise.shape
|
| 330 |
-
u = torch.nn.Upsample(size=(w, h), mode="bilinear").to(device)
|
| 331 |
-
for i in range(iterations):
|
| 332 |
-
r = random.random() * 2 + 2 # Rather than always going 2x,
|
| 333 |
-
wn, hn = max(1, int(w / (r**i))), max(1, int(h / (r**i)))
|
| 334 |
-
noise += u(torch.randn(b, c, wn, hn,
|
| 335 |
-
generator=gen).to(device)) * discount**i
|
| 336 |
-
if wn == 1 or hn == 1:
|
| 337 |
-
break # Lowest resolution is 1x1
|
| 338 |
-
return noise / noise.std() # Scaled back to roughly unit variance
|
| 339 |
-
|
| 340 |
-
@torch.no_grad()
|
| 341 |
-
def inferV4(
|
| 342 |
-
self,
|
| 343 |
-
prompt: Union[str, List[str]],
|
| 344 |
-
height: Optional[int] = None,
|
| 345 |
-
width: Optional[int] = None,
|
| 346 |
-
num_inference_steps: int = 50,
|
| 347 |
-
guidance_scale: float = 7.5,
|
| 348 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 349 |
-
num_images_per_prompt: Optional[int] = 1,
|
| 350 |
-
eta: float = 0.0,
|
| 351 |
-
generator: Optional[torch.Generator] = None,
|
| 352 |
-
latents: Optional[torch.FloatTensor] = None,
|
| 353 |
-
output_type: Optional[str] = "pil",
|
| 354 |
-
return_dict: bool = True,
|
| 355 |
-
callback: Optional[Callable[[
|
| 356 |
-
int, int, torch.FloatTensor], None]] = None,
|
| 357 |
-
callback_steps: Optional[int] = 1,
|
| 358 |
-
compile_unet: bool = True,
|
| 359 |
-
compile_vae: bool = True,
|
| 360 |
-
compile_tenc: bool = True,
|
| 361 |
-
max_tokens=0,
|
| 362 |
-
seed=-1,
|
| 363 |
-
flags=[],
|
| 364 |
-
og_prompt=None,
|
| 365 |
-
og_neg_prompt=None,
|
| 366 |
-
disc=0.4,
|
| 367 |
-
iter=6,
|
| 368 |
-
pyramid=0, # disabled by default unless specified
|
| 369 |
-
):
|
| 370 |
-
r"""
|
| 371 |
-
Function invoked when calling the pipeline for generation.
|
| 372 |
-
|
| 373 |
-
Args:
|
| 374 |
-
prompt (`str` or `List[str]`):
|
| 375 |
-
The prompt or prompts to guide the image generation.
|
| 376 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 377 |
-
The height in pixels of the generated image.
|
| 378 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 379 |
-
The width in pixels of the generated image.
|
| 380 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 381 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 382 |
-
expense of slower inference.
|
| 383 |
-
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 384 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 385 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 386 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 387 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 388 |
-
usually at the expense of lower image quality.
|
| 389 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
| 390 |
-
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 391 |
-
if `guidance_scale` is less than `1`).
|
| 392 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 393 |
-
The number of images to generate per prompt.
|
| 394 |
-
eta (`float`, *optional*, defaults to 0.0):
|
| 395 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 396 |
-
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 397 |
-
generator (`torch.Generator`, *optional*):
|
| 398 |
-
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
| 399 |
-
deterministic.
|
| 400 |
-
latents (`torch.FloatTensor`, *optional*):
|
| 401 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 402 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 403 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
| 404 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 405 |
-
The output format of the generate image. Choose between
|
| 406 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 407 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
| 408 |
-
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 409 |
-
plain tuple.
|
| 410 |
-
callback (`Callable`, *optional*):
|
| 411 |
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 412 |
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 413 |
-
callback_steps (`int`, *optional*, defaults to 1):
|
| 414 |
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 415 |
-
called at every step.
|
| 416 |
-
|
| 417 |
-
Returns:
|
| 418 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 419 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 420 |
-
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 421 |
-
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 422 |
-
(nsfw) content, according to the `safety_checker`.
|
| 423 |
-
"""
|
| 424 |
-
# 0. Default height and width to unet
|
| 425 |
-
|
| 426 |
-
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 427 |
-
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 428 |
-
|
| 429 |
-
self.check_inputs(prompt, height, width, callback_steps)
|
| 430 |
-
if negative_prompt == None:
|
| 431 |
-
negative_prompt = ['']
|
| 432 |
-
# 2. Define call parameters
|
| 433 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
| 434 |
-
device = self._execution_device
|
| 435 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 436 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 437 |
-
# corresponds to doing no classifier free guidance.
|
| 438 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
| 439 |
-
|
| 440 |
-
# # 3. Encode input prompt
|
| 441 |
-
|
| 442 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 443 |
-
timesteps = self.scheduler.timesteps
|
| 444 |
-
|
| 445 |
-
# Cache key for flags
|
| 446 |
-
plain = "plain" in flags
|
| 447 |
-
flair = None
|
| 448 |
-
for flag in flags:
|
| 449 |
-
if "flair" in flag:
|
| 450 |
-
flair = flag
|
| 451 |
-
break
|
| 452 |
-
|
| 453 |
-
with torch.no_grad():
|
| 454 |
-
c_time = time.time()
|
| 455 |
-
user_cond = self.build_scheduled_cond(
|
| 456 |
-
prompt[0], num_inference_steps, ('pos', og_prompt, seed, plain, flair))
|
| 457 |
-
c_time = time.time()
|
| 458 |
-
user_uncond = self.build_scheduled_cond(
|
| 459 |
-
negative_prompt[0], num_inference_steps, ('neg', negative_prompt[0], 0))
|
| 460 |
-
|
| 461 |
-
c = []
|
| 462 |
-
c.extend(user_cond)
|
| 463 |
-
uc = []
|
| 464 |
-
uc.extend(user_uncond)
|
| 465 |
-
max_token_count = 0
|
| 466 |
-
|
| 467 |
-
for cond in uc:
|
| 468 |
-
if cond.cond.shape[1] > max_token_count:
|
| 469 |
-
max_token_count = cond.cond.shape[1]
|
| 470 |
-
for cond in c:
|
| 471 |
-
if cond.cond.shape[1] > max_token_count:
|
| 472 |
-
max_token_count = cond.cond.shape[1]
|
| 473 |
-
|
| 474 |
-
def pad_tensor(conditionings: List[ScheduledPromptConditioning], max_token_count: int) -> List[ScheduledPromptConditioning]:
|
| 475 |
-
|
| 476 |
-
c0_shape = conditionings[0].cond.shape
|
| 477 |
-
if not all([len(c.cond.shape) == len(c0_shape) for c in conditionings]):
|
| 478 |
-
raise ValueError(
|
| 479 |
-
"Conditioning tensors must all have either 2 dimensions (unbatched) or 3 dimensions (batched)")
|
| 480 |
-
|
| 481 |
-
if len(c0_shape) == 2:
|
| 482 |
-
# need to be unsqueezed
|
| 483 |
-
for c in conditionings:
|
| 484 |
-
c.cond = c.cond.unsqueeze(0)
|
| 485 |
-
c0_shape = conditionings[0].cond.shape
|
| 486 |
-
if len(c0_shape) != 3:
|
| 487 |
-
raise ValueError(
|
| 488 |
-
f"All conditioning tensors must have the same number of dimensions (2 or 3)")
|
| 489 |
-
|
| 490 |
-
if not all([c.cond.shape[0] == c0_shape[0] and c.cond.shape[2] == c0_shape[2] for c in conditionings]):
|
| 491 |
-
raise ValueError(
|
| 492 |
-
f"All conditioning tensors must have the same batch size ({c0_shape[0]}) and number of embeddings per token ({c0_shape[1]}")
|
| 493 |
-
|
| 494 |
-
# if necessary, pad shorter tensors out with an emptystring tensor
|
| 495 |
-
empty_z = torch.cat(
|
| 496 |
-
[self.compel.build_conditioning_tensor("")] * c0_shape[0])
|
| 497 |
-
for i, c in enumerate(conditionings):
|
| 498 |
-
cond = c.cond.to(self.device)
|
| 499 |
-
while cond.shape[1] < max_token_count:
|
| 500 |
-
cond = torch.cat([cond, empty_z], dim=1)
|
| 501 |
-
conditionings[i] = ScheduledPromptConditioning(
|
| 502 |
-
c.end_at_step, cond)
|
| 503 |
-
return conditionings
|
| 504 |
-
|
| 505 |
-
uc = pad_tensor(uc, max_token_count)
|
| 506 |
-
c = pad_tensor(c, max_token_count)
|
| 507 |
-
|
| 508 |
-
next_uc = uc.pop(0)
|
| 509 |
-
next_c = c.pop(0)
|
| 510 |
-
prompt_embeds = None
|
| 511 |
-
new_embeds = True
|
| 512 |
-
embed_per_step = []
|
| 513 |
-
for i in range(len(timesteps)):
|
| 514 |
-
if i > next_uc.end_at_step:
|
| 515 |
-
next_uc = uc.pop(0)
|
| 516 |
-
new_embeds = True
|
| 517 |
-
if i > next_c.end_at_step:
|
| 518 |
-
next_c = c.pop(0)
|
| 519 |
-
new_embeds = True
|
| 520 |
-
|
| 521 |
-
if new_embeds:
|
| 522 |
-
negative_prompt_embeds, prompt_embeds = self.compel.pad_conditioning_tensors_to_same_length([
|
| 523 |
-
next_uc.cond, next_c.cond])
|
| 524 |
-
prompt_embeds = torch.cat(
|
| 525 |
-
[negative_prompt_embeds, prompt_embeds])
|
| 526 |
-
new_embeds = False
|
| 527 |
-
|
| 528 |
-
embed_per_step.append(prompt_embeds)
|
| 529 |
-
|
| 530 |
-
# 5. Prepare latent variables
|
| 531 |
-
num_channels_latents = self.unet.in_channels
|
| 532 |
-
latents = self.prepare_latents(
|
| 533 |
-
batch_size * num_images_per_prompt,
|
| 534 |
-
num_channels_latents,
|
| 535 |
-
height,
|
| 536 |
-
width,
|
| 537 |
-
prompt_embeds.dtype,
|
| 538 |
-
device,
|
| 539 |
-
generator,
|
| 540 |
-
latents,
|
| 541 |
-
)
|
| 542 |
-
|
| 543 |
-
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 544 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 545 |
-
|
| 546 |
-
# 7. Denoising loop
|
| 547 |
-
num_warmup_steps = len(timesteps) - \
|
| 548 |
-
num_inference_steps * self.scheduler.order
|
| 549 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 550 |
-
for i, t in enumerate(timesteps):
|
| 551 |
-
# expand the latents if we are doing classifier free guidance
|
| 552 |
-
latent_model_input = torch.cat(
|
| 553 |
-
[latents] * 2) if do_classifier_free_guidance else latents
|
| 554 |
-
latent_model_input = self.scheduler.scale_model_input(
|
| 555 |
-
latent_model_input, t)
|
| 556 |
-
|
| 557 |
-
prompt_embeds = embed_per_step[i]
|
| 558 |
-
# predict the noise residual
|
| 559 |
-
|
| 560 |
-
noise_pred = self.unet(
|
| 561 |
-
latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
|
| 562 |
-
|
| 563 |
-
# perform guidance
|
| 564 |
-
if do_classifier_free_guidance:
|
| 565 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 566 |
-
noise_pred = noise_pred_uncond + guidance_scale * \
|
| 567 |
-
(noise_pred_text - noise_pred_uncond)
|
| 568 |
-
|
| 569 |
-
if (i < pyramid*num_inference_steps):
|
| 570 |
-
noise_pred = self._pyramid_noise_like(
|
| 571 |
-
noise_pred, device, seed, iterations=iter, discount=disc)
|
| 572 |
-
|
| 573 |
-
# compute the previous noisy sample x_t -> x_t-1
|
| 574 |
-
latents = self.scheduler.step(
|
| 575 |
-
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 576 |
-
|
| 577 |
-
# call the callback, if provided
|
| 578 |
-
if (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0:
|
| 579 |
-
progress_bar.update()
|
| 580 |
-
if callback is not None and i % callback_steps == 0:
|
| 581 |
-
callback(i, t, latents)
|
| 582 |
-
|
| 583 |
-
if not output_type == "latent":
|
| 584 |
-
image = self.vae.decode(
|
| 585 |
-
latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 586 |
-
image, has_nsfw_concept = self.run_safety_checker(
|
| 587 |
-
image, device, prompt_embeds.dtype)
|
| 588 |
-
else:
|
| 589 |
-
image = latents
|
| 590 |
-
has_nsfw_concept = None
|
| 591 |
-
|
| 592 |
-
if has_nsfw_concept is None:
|
| 593 |
-
do_denormalize = [True] * image.shape[0]
|
| 594 |
-
else:
|
| 595 |
-
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 596 |
-
|
| 597 |
-
image = self.image_processor.postprocess(
|
| 598 |
-
image, output_type=output_type, do_denormalize=do_denormalize)
|
| 599 |
-
|
| 600 |
-
# Offload last model to CPU
|
| 601 |
-
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 602 |
-
self.final_offload_hook.offload()
|
| 603 |
-
|
| 604 |
-
if not return_dict:
|
| 605 |
-
return (image, has_nsfw_concept)
|
| 606 |
-
|
| 607 |
-
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
| 608 |
-
|
| 609 |
-
@torch.no_grad()
|
| 610 |
-
def inferPipe(
|
| 611 |
-
self,
|
| 612 |
-
prompt: Union[str, List[str]] = None,
|
| 613 |
-
height: Optional[int] = None,
|
| 614 |
-
width: Optional[int] = None,
|
| 615 |
-
num_inference_steps: int = 50,
|
| 616 |
-
guidance_scale: float = 7.5,
|
| 617 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 618 |
-
num_images_per_prompt: Optional[int] = 1,
|
| 619 |
-
eta: float = 0.0,
|
| 620 |
-
generator: Optional[Union[torch.Generator,
|
| 621 |
-
List[torch.Generator]]] = None,
|
| 622 |
-
latents: Optional[torch.FloatTensor] = None,
|
| 623 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 624 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 625 |
-
output_type: Optional[str] = "pil",
|
| 626 |
-
return_dict: bool = True,
|
| 627 |
-
callback: Optional[Callable[[
|
| 628 |
-
int, int, torch.FloatTensor], None]] = None,
|
| 629 |
-
callback_steps: int = 1,
|
| 630 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 631 |
-
):
|
| 632 |
-
r"""
|
| 633 |
-
Function invoked when calling the pipeline for generation.
|
| 634 |
-
|
| 635 |
-
Args:
|
| 636 |
-
prompt (`str` or `List[str]`, *optional*):
|
| 637 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 638 |
-
instead.
|
| 639 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 640 |
-
The height in pixels of the generated image.
|
| 641 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 642 |
-
The width in pixels of the generated image.
|
| 643 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 644 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 645 |
-
expense of slower inference.
|
| 646 |
-
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 647 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 648 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 649 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 650 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 651 |
-
usually at the expense of lower image quality.
|
| 652 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
| 653 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 654 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 655 |
-
less than `1`).
|
| 656 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 657 |
-
The number of images to generate per prompt.
|
| 658 |
-
eta (`float`, *optional*, defaults to 0.0):
|
| 659 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 660 |
-
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 661 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 662 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 663 |
-
to make generation deterministic.
|
| 664 |
-
latents (`torch.FloatTensor`, *optional*):
|
| 665 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 666 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 667 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
| 668 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 669 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 670 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
| 671 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 672 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 673 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 674 |
-
argument.
|
| 675 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 676 |
-
The output format of the generate image. Choose between
|
| 677 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 678 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
| 679 |
-
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 680 |
-
plain tuple.
|
| 681 |
-
callback (`Callable`, *optional*):
|
| 682 |
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 683 |
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 684 |
-
callback_steps (`int`, *optional*, defaults to 1):
|
| 685 |
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 686 |
-
called at every step.
|
| 687 |
-
cross_attention_kwargs (`dict`, *optional*):
|
| 688 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 689 |
-
`self.processor` in
|
| 690 |
-
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 691 |
-
|
| 692 |
-
Examples:
|
| 693 |
-
|
| 694 |
-
Returns:
|
| 695 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 696 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 697 |
-
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 698 |
-
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 699 |
-
(nsfw) content, according to the `safety_checker`.
|
| 700 |
-
"""
|
| 701 |
-
# 0. Default height and width to unet
|
| 702 |
-
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 703 |
-
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 704 |
-
|
| 705 |
-
# 1. Check inputs. Raise error if not correct
|
| 706 |
-
self.check_inputs(prompt, height, width, callback_steps)
|
| 707 |
-
|
| 708 |
-
# 2. Define call parameters
|
| 709 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
| 710 |
-
device = self._execution_device
|
| 711 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 712 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 713 |
-
# corresponds to doing no classifier free guidance.
|
| 714 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
| 715 |
-
|
| 716 |
-
# 3. Encode input prompt
|
| 717 |
-
text_embeddings = self._encode_prompt(
|
| 718 |
-
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
| 719 |
-
)
|
| 720 |
-
|
| 721 |
-
# 4. Prepare timesteps
|
| 722 |
-
self.scheduler.set_timesteps(num_inference_steps)
|
| 723 |
-
timesteps = self.scheduler.timesteps
|
| 724 |
-
|
| 725 |
-
# 5. Prepare latent variables
|
| 726 |
-
num_channels_latents = self.unet.in_channels
|
| 727 |
-
latents = self.prepare_latents(
|
| 728 |
-
batch_size * num_images_per_prompt,
|
| 729 |
-
num_channels_latents,
|
| 730 |
-
height,
|
| 731 |
-
width,
|
| 732 |
-
text_embeddings.dtype,
|
| 733 |
-
device,
|
| 734 |
-
generator,
|
| 735 |
-
latents,
|
| 736 |
-
)
|
| 737 |
-
|
| 738 |
-
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 739 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 740 |
-
|
| 741 |
-
# 7. Denoising loop
|
| 742 |
-
num_warmup_steps = len(timesteps) - \
|
| 743 |
-
num_inference_steps * self.scheduler.order
|
| 744 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 745 |
-
for i, t in enumerate(timesteps):
|
| 746 |
-
# expand the latents if we are doing classifier free guidance
|
| 747 |
-
latent_model_input = torch.cat(
|
| 748 |
-
[latents] * 2) if do_classifier_free_guidance else latents
|
| 749 |
-
latent_model_input = self.scheduler.scale_model_input(
|
| 750 |
-
latent_model_input, t)
|
| 751 |
-
|
| 752 |
-
noise_pred = self.unet(
|
| 753 |
-
latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
| 754 |
-
|
| 755 |
-
# perform guidance
|
| 756 |
-
if do_classifier_free_guidance:
|
| 757 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 758 |
-
noise_pred = noise_pred_uncond + guidance_scale * \
|
| 759 |
-
(noise_pred_text - noise_pred_uncond)
|
| 760 |
-
|
| 761 |
-
# compute the previous noisy sample x_t -> x_t-1
|
| 762 |
-
latents = self.scheduler.step(
|
| 763 |
-
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 764 |
-
|
| 765 |
-
# call the callback, if provided
|
| 766 |
-
if (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0:
|
| 767 |
-
progress_bar.update()
|
| 768 |
-
if callback is not None and i % callback_steps == 0:
|
| 769 |
-
callback(i, t, latents)
|
| 770 |
-
|
| 771 |
-
if not output_type == "latent":
|
| 772 |
-
image = self.vae.decode(
|
| 773 |
-
latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 774 |
-
image, has_nsfw_concept = self.run_safety_checker(
|
| 775 |
-
image, device, text_embeddings.dtype)
|
| 776 |
-
else:
|
| 777 |
-
image = latents
|
| 778 |
-
has_nsfw_concept = None
|
| 779 |
-
|
| 780 |
-
if has_nsfw_concept is None:
|
| 781 |
-
do_denormalize = [True] * image.shape[0]
|
| 782 |
-
else:
|
| 783 |
-
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 784 |
-
|
| 785 |
-
image = self.image_processor.postprocess(
|
| 786 |
-
image, output_type=output_type, do_denormalize=do_denormalize)
|
| 787 |
-
|
| 788 |
-
# Offload last model to CPU
|
| 789 |
-
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 790 |
-
self.final_offload_hook.offload()
|
| 791 |
-
|
| 792 |
-
if not return_dict:
|
| 793 |
-
return (image, has_nsfw_concept)
|
| 794 |
-
|
| 795 |
-
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|